
    ǄgKk                        d dl Z d dlmZ d dlmZmZmZmZmZm	Z	 d dl
Z
d dlmZmZ d dlmZmZmZmZmZmZmZmZmZ g dZ edd      Z G d	 d
e
j4                        Z	 dde
j4                  dedefdZ G d de      Z G d de      Zy)    N)
namedtuple)AnyCallableDictListOptionalTuple))sparse_semi_structured_from_dense_cutlass'sparse_semi_structured_to_dense_cutlass)	fallback_dispatchersemi_sparse_addmmsemi_sparse_detachsemi_sparse_indicessemi_sparse_linearsemi_sparse_mmsemi_sparse_tsemi_sparse_valuessemi_sparse_view)SparseSemiStructuredTensor!SparseSemiStructuredTensorCUTLASS$SparseSemiStructuredTensorCUSPARSELTto_sparse_semi_structured_SEMI_STRUCTURED_SPARSE_CONFIGz=sparse_min_rows sparse_min_cols dense_min_rows dense_min_colsc                   $   e Zd ZU dZdZeed<   eej                  e
f   ed<   dZeed<   dZeed<   dZeed	<   eed
<   eeef   ed<   eej$                     ed<   eej$                     ed<   eej$                     ed<   eej$                     ed<   eej$                     ed<   eed<   eed<   g dZe	 	 	 d)dej*                  deej$                     deej$                     deej$                     deej$                     deej$                     dededefd       ZdefdZdeee   eej*                  eeef   f   fdZedeej*                  eeef   dej$                  fd       Zej:                  j<                  Zede fd       Z!ed*d+d       Z"edej$                  ddfd        Z#ed!ej$                  dej$                  fd"       Z$d# Z%edej$                  dd fd$       Z&dd%d&ej$                  d'eej$                     dej$                  fd(Z'y),r   a  
    This class implementes semi-structured sparsity as a Tensor subclass.

    Semi-structured sparsity describes a sparsity pattern where n in every 2n elements are sparse,
    depending on the datatype. It is also referred to as 2:4 sparsity or fine-grained
    structured sparsity.

    There are two backends available for semi_structred sparsity, either cuSPARSELt or CUTLASS.
    This class is meant to serve as a base class for both implementations. SparseSemiStructuredCUTLASS
    and SparseSemiStructuredCUSPARSELT both inherit from this class and define three backend-specific items.
    Note that as such, this class cannot be insantiated directly.

    -`_DTYPE_SHAPE_CONSTRAINTS` - A dictionary holding backend specific dense/sparse min shape constraints
    - `def from_dense()` - backend specific compression routines
    - `def _mm()` - backend specifc mm op (either torch._cslt_sparse_mm or torch._sparse_semi_structured_(mm|addmm))
    r   _DEFAULT_ALG_ID_DTYPE_SHAPE_CONSTRAINTST_FORCE_CUTLASSF_FUSE_TRANSPOSE_PROTOTYPE_WARNING_SHOWNBACKENDSPARSE_DISPATCHpackedmetapacked_tmeta_tcompressed_swizzled_bitmaskfuse_transpose_cusparseltalg_id_cusparselt)r"   r#   r$   r%   r&   shaperequires_gradc
                    | j                   sPt        j                  dt               d| _         | j	                          t
        j                  j                  |        ||}
n||}
nt        d      |
j                  |
j                  |
j                  |	d}t        j                  j                  | |fi |}||_        ||_        ||_        ||_        ||_        ||_        ||_        |S )a0  
        Create a new instance of the tensor subclass from the compressed sparse representation.

        We have the option to create the subclass with the compressed representations of both X and X', for training.
        For inference, we only need a single representation (either X or X'), while the corresponding other set will be None.

        Depending on the backend selected, certain fields will be set to None. (CUSPARSELT vs CUTLASS)

        Args:
            shape: The shape of the original dense tensor
            packed: The compressed representation of the original dense tensor
            meta: The metadata of the original dense tensor, if it is stored separately
            packed_t: The compressed representation of the transposed original dense tensor
            meta_t: The metadata of the transposed original dense tensor, if it is stored separately
            compressed_swizzled_bitmask: The masks used by the CUTLASS backend to determine which threads should
                                         participate in the computation. Used for pointwise ops.
            fuse_transpose_cusparselt: When running with cuSPARSELt, we have the option to fuse a transposition
                                       with a matmul, which is useful in the case of 2:4 sparse training.
            alg_id_cusparselt: The algorithm id to use when using cuSPARSELT, will have effect on performance

        Returns:
            torch.Tensor: A torch.Tensor wrapper subclass.

        Raises:
            ValueError: If all of the tensor arguments are None.
        zThe PyTorch API of SparseSemiStructuredTensor is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.sparse module for further information about the project.Tz3At least one of packed or packed_t must be provided)devicedtypelayoutr*   )r   warningswarnUserWarning_load_dispatch_tabletorch_dynamoallow_in_graph
ValueErrorr,   r-   r.   Tensor_make_wrapper_subclassr"   r#   r$   r%   r&   r'   r(   )clsr)   r"   r#   r$   r%   r&   r'   r(   r*   previous_tensorkwargstensors                d/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/sparse/semi_structured.py__new__z"SparseSemiStructuredTensor.__new__J   s    N ++MMH
  ,0C(
 $$& MM((-$O!&ORSS &,,$**%,,*	
 44S%J6J"-H*+D(#4     returnc                 j    t        | d      sJ | j                  j                   d| j                   dS )Nr)   z(shape=))hasattr	__class____name__r)   )selfs    r=   __repr__z#SparseSemiStructuredTensor.__repr__   s4    tW%%%..))*'$**Q??r?   c                      t        t         fd j                              } j                   j                   j
                   j                  f}||fS )Nc                      t        |       d uS N)getattr)xrF   s    r=   <lambda>z?SparseSemiStructuredTensor.__tensor_flatten__.<locals>.<lambda>   s    WT1-T9 r?   )listfilter	__slots__r)   r'   r(   r*   )rF   inner_tensorstensor_metas   `  r=   __tensor_flatten__z-SparseSemiStructuredTensor.__tensor_flatten__   sV     94>>J
 JJ**""	
 k))r?   rR   c                     |\  }}}} | ||j                  dd       |j                  dd       |j                  dd       |j                  dd       |j                  dd       |||	      S )Nr"   r#   r$   r%   r&   	r)   r"   r#   r$   r%   r&   r'   r(   r*   )get)	r9   rQ   rR   
outer_sizeouter_strider)   r'   r(   r*   s	            r=   __tensor_unflatten__z/SparseSemiStructuredTensor.__tensor_unflatten__   s     NYJ(*;] $$Xt4""640"&&z48 $$Xt4(5(9(9-t) '@/'
 	
r?   c                     |j                   | j                  vr%t        | j                   d|j                   d       | j                  |j                      ||||      S )NzI only supports a specific set of operations, can't perform requested op (rB   )_overloadpacketr!   NotImplementedErrorrE   )r9   functypesargsr;   s        r=   __torch_dispatch__z-SparseSemiStructuredTensor.__torch_dispatch__   sh    s':'::%<<. !//3}}oQ@  9s""4#7#78udFSSr?   Nc                 ,   t        | dd      t        j                  j                  j                  t
        t        j                  j                  j                  t        t        j                  j                  j                  t        t        j                  j                  j                  t        t        j                  j                  j                  t        t        j                  j                  j                  t        t        j                  j                  j                  t         t        j                  j                  j"                  t$        t        j                  j                  j&                  t$        t        j                  j                  j(                  t*        t        j                  j                  j,                  t.        t        j                  j                  j0                  t        i| _        || j2                  j5                  |       yyy)zT
        Loads the op overload sparse dispatch table for the current class.
        r!   N)rK   r3   opsatenvaluesr   indicesr   is_same_sizer   detach_detachr   tr   viewr   mmr   matmuladdmmr   linearr   _to_copyr!   update)r9   custom_dispatch_tables     r=   r2   z/SparseSemiStructuredTensor._load_dispatch_table   s2   
 3)408		%%'9		&&(;		++-@		&&(;		%%'9		  -		##%5		!!>		%%~		$$&7		%%'9		'')<#C %0##**+@A 1 9r?   original_tensorc           	      V   |j                   st        d|j                   d      |j                         dk7  rt        d|j                          d      |j	                         st        d      |j
                  | j                  vrt        d|j
                   d      |j                  \  }}| j                  |j
                     j                  }| j                  |j
                     j                  }||k  s||z  s
||k  s||z  rt        d	|j                   d
| d| d      y)z_
        Assert that the given tensor is valid for semi-structured sparse compression.
        zError original_tensor.device= z= is not supported! Only CUDA tensors are currently supported.   zError original_tensor.dim = z; is not supported! Only 2d tensors are currently supported.zXError original_tensor is not contiguous!Only contiguous tensors are currently supported.zError original_tensor.dtype zO is not a supported dtype! dtype must be one of: {cls._DTYPE_SHAPE_CONSTRAINTS}zError original_tensor.shape zS is not supported! Both dimensions must be larger or equal than and a multiple of (z, rB   N)
is_cudaRuntimeErrorr,   dimis_contiguousr-   r   r)   sparse_min_rowssparse_min_cols)r9   rr   mnmin_rowsmin_colss         r=    _validate_device_dim_dtype_shapez;SparseSemiStructuredTensor._validate_device_dim_dtype_shape   sp    &&01G1G0H I= =   A%./B/B/D.E F; ;  ,,.C    (D(DD./D/D.E FG G  $$1//0E0EFVV//0E0EFVVx<1x<1x<1x<./D/D.E FSS[R\\^_g^hhik  <Hr?   dense_inputc                    |j                         dk(  sJ |j                  \  }}| j                  |j                     j                  }| j                  |j                     j
                  }||k  s||z  r| |z  nd}||k  s||z  r| |z  nd}|s|r.t        j                  j                  j                  |d|d|f      S |S )z
        Calculates padding for dense tensor and pads tensor if necessary.
        If padding is not required, this function returns the original tensor.
        rt   r   )
rw   r)   r   r-   dense_min_rowsdense_min_colsr3   nn
functionalpad)r9   r   r{   r|   r}   r~   to_pad_mto_pad_ns           r=   _pad_dense_inputz+SparseSemiStructuredTensor._pad_dense_input  s      A%%%   1//0A0ABQQ//0A0ABQQ %&LALA2=a$%LALA2=ax88&&**;Ha8RSSr?   c                     | j                   d   }t        j                  | t        j                  || j                  | j
                              S )N)r-   r,   )r)   r3   rk   eyer-   r,   )rF   cols     r=   to_densez#SparseSemiStructuredTensor.to_dense*  s5    jjnxxeii4::dkkRSSr?   c                     t         rJ   r\   r9   rr   s     r=   
from_densez%SparseSemiStructuredTensor.from_dense.  s    !!r?   biasBr   c                    t         rJ   r   )rF   r   r   r;   s       r=   _mmzSparseSemiStructuredTensor._mm2  s
     "!r?   )Fr   FrJ   )r@   N)(rE   
__module____qualname____doc__r   int__annotations__r   r3   r-   r   r   boolr   r   strr   r   r7   rP   staticmethodSizer>   rG   r	   r   rS   classmethodrY   _C_disabled_torch_function_impl__torch_function__r   r`   r2   r   r   r   r   r    r?   r=   r   r   %   s   " OS"5;;0N#NOOND!OT!%*d*L(H,--U\\""
5<<
  u||$$U\\""!)%,,!77##WI +0!"#PzzP &P u||$	P
 5<<(P &P &.ell%;P $(P P P Pd@# @*	tCy%

D#t ;<<	=* 
 5::tS$67
 

 
, ??Tc T T B B, )u|| )PT ) )V 5<< ELL  *T " ":V " " (,	"<<" u||$	" 
"r?   r   rr   
transposedr@   c                     |rt        j                  dt        d       t        j                  rt
        j                  j                  nt
        j                  j                  }|j                  |       S )a	  
    This function converts a dense tensor into a sparse semi-structured tensor.
    It will return a SparseSemiStructuredTensor, a subclass of torch.Tensor.

    This function will check to ensure the dense tensor has the right dtype, size, dims, and device.
    We currently only support semi-structured sparse tensors for 2d CUDA tensors.
    Additionally, your tensor must be a positive multiple of the mininum sparse block size, given in
    `_DTYPE_TO_SHAPE_CONSTRAINTS` for each dtype (float32, float16, bfloat16, int8).

    Args:
        original_tensor (Tensor): the dense tensor to convert
        transposed (bool, optional): deprecated arg to be removed in another release. Do not use.
    Returns:
        SparseSemiStructuredTensor: A sparse semi-structured tensor created from the given original_tensor
    Raises:
        None
    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
        >>> A = torch.Tensor([0, 0, 1, 1]).tile((128, 32)).half().cuda()
        tensor([[0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                ...,
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.]], device='cuda:0', dtype=torch.float16)
        >>> A_sparse = to_sparse_semi_structured(A)
        SparseSemiStructuredTensor(shape=torch.Size([128, 128]))
        >>> A_sparse.values()
        tensor([[1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                ...,
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.]], device='cuda:0', dtype=torch.float16),
        >>> A_sparse.indices()
        tensor([[-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                ...,
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370]], device='cuda:0', dtype=torch.int16))
    zSetting transpose from `to_sparse_semi_structured` is deprecated and will be removed in a future release. `SparseSemiStructuredTensor` only support contiguous input tensors.rt   )
stacklevel)
r/   r0   FutureWarningr   r   r3   sparser   r   r   )rr   r   SPARSE_SUBCLASSs      r=   r   r   <  sa    b R 	
 &44 	66\\>>  %%o66r?   c                       e Zd ZdZdZej                   edddd      ej                   edddd      ej                   edddd      ej                   edddd      iZed	ej                  d
d fd       Z fdZe	 dd	ej                  d
dfd       Zdddej                  deej                     d
ej                  fdZ xZS )r   a  
    This class implements semi-structured sparsity for the CUTLASS backend.


    In this implementation, the specified elements and metadata are stored seprately,
    in packed and meta respectively.

    When _FORCE_CUTLASS is set, or when cuSPARSELt is not available, this subclass calls into _sparse_semi_structured_(mm|addmm) and
    sparse_semi_structured_from_dense for conversion to the compressed format.
    cutlass          @         rr   r@   c           	          | j                  |       t        |      \  }} | |j                  ||d d d |j                        S )Nr"   r#   r$   r%   r&   r*   )r   r
   r)   r*   )r9   rr   sparse_tensor_cutlassmeta_tensor_cutlasss       r=   r   z,SparseSemiStructuredTensorCUTLASS.from_dense  sU     	,,_= 6oF	
!!!($(,)77
 	
r?   c                     | j                   | j                  J | j                   j                  dk(  r t        | j                  | j                         S t        |          S )Nrt   )r#   r"   ndimr   superr   )rF   rD   s    r=   r   z*SparseSemiStructuredTensorCUTLASS.to_dense  s]    yy$)@@@ yy~~"	 4			
 !#	
r?   r   c           	      p    t        j                  ||d      \  }}}}} | |j                  |||||d      S )a  
        This function takes in a unpruned dense tensor and runs a (branchless) static sort across a 4x4 tile.

        It greedily picks the largest values in the tile, upholding the 2:4 sparsity constraint across both rows and columns.
        The algorithm used to prune the matrix is implemented in `_sparse_semi_structured_tile`.

        Then it creates the packed and meta tensors for the compressed sparse representation of the pruned dense tensor.
        It also calculates the packed_t and meta_t tensors for the compressed sparse representation of the transposed
        pruned dense tensor.
        Since we cannot transpose the compressed representations, we store both for the fw/bw pass respectively.

        Finally, this function also computes a compressed swizzled bitmask that encodes the sparsity pattern
        This can be used in the backward pass to mask the gradients.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to CUTLASS semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]                                    -> metadata

                                                  -> pack to transposed CUTLASS      -> packed_t
                                                     semi-structured representation  -> metadata_t

                                                  -> compute swizzled bitmask        -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same five outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUTLASS
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cutlass, meta_cutlass = sparse_semi_structured_from_dense_cutlass(pruned)
        packed_t_cutlass, meta_t_cutlass = sparse_semi_structured_from_dense_cutlass(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUTLASS(dense.shape, packed_cutlass, meta_cutlass, packed_t_cutlass, meta_t_cutlass, bitmask)
        ```
        T	algorithmuse_cutlassFr   r3   _sparse_semi_structured_tiler)   r9   rr   r   r"   r#   r$   r%   r&   s           r=   prune_dense_static_sortz9SparseSemiStructuredTensorCUTLASS.prune_dense_static_sort  sX    b ..yd
	
'
 !!(C
 	
r?   Nr   r   r   c                   t        |t              rt        d      | j                  j                  }| j
                  dk7  s|j
                  dk7  rt        d| d      | j                  | j                  t        d| d      |,t        j                  | j                  | j                  |      }n,t        j                  || j                  | j                  |      }|d | j                  d    S )NZ`SparseSemiStructuredTensor @ SparseSemiStructuredTensor` is not supported by the hardwarert   `)` matmul: Broadcasting is not implemented$` matmul: operation is not supportedr   )
isinstancer   r6   rD   rE   r   r\   r"   r#   r3   _sparse_semi_structured_mm_sparse_semi_structured_addmmr)   )rF   r   r   r;   cls_nameress         r=   r   z%SparseSemiStructuredTensorCUTLASS._mm  s     a34l  >>**99>QVVq[%H:FG  ;;$))"3%H:AB  |66t{{DIIqQ99$++tyy! A''r?    )rE   r   r   r   r    r3   int8r   float16bfloat16float32r   r   r7   r   r   r   r   r   __classcell__)rD   s   @r=   r   r     s    	 G

22sBC5b"aC6r2q!D5b"aC	  
#ll
	,
 
$	
 68<
#ll<
	%<
 <
~ BF(((0(>(	(r?   r   c                   R   e Zd ZdZdZej                   edddd      ej                   edddd      ej                   edddd      iZ
edej                  dd fd       Ze	 ddej                  dd	fd
       Zdddej                  deej                     dej                  fdZy)r   a  
    The cuSPARSELt backend expects the specified elements and the metadata to be stored in a single tensor:
    packed = [ specified elements of original tensor | metadata ]
    For an original tensor of size (m, k) we expect the first m * k // 2 elements to be the kept elements
    The rest of the tensor is metadata. Since there is only one tensor, we only use the packed and packed_t
    attributes respectively.

    cuSPARSELt also supports transposition fusion, which is necessary for performant 2:4 sparse training, as well
    as specifying alg_id, a config that affects the performance of the matmul depending on matmul sizes.
    
cusparseltr   r   r   rr   r@   c                     | j                  |        | |j                  t        j                  |      d d d d t        j
                  t        j                  |j                  	      S )NrU   )r   r)   r3   _cslt_compressr   r   r   r*   r   s     r=   r   z/SparseSemiStructuredTensorCUSPARSELT.from_dense  s]     	,,_=!''''8(,&@&P&P8HH)77

 
	
r?   r   c           	      p    t        j                  ||d      \  }}}}} | |j                  |||||d      S )a  
        This function does the same thing as described in SparseSemiStructuredCUTLASS, but uses the cuSPASRELt metadata
        layout and sparse matmul.

        The only functional difference is that cuSPARSELt stores `metadata` and `packed` together into a single tensor.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to cuSPARSELT semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]

                                                  -> pack to transposed cuSPARSELt      -> packed_t
                                                     semi-structured representation

                                                  -> compute swizzled bitmask           -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same three outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUSPARSELT
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cusparselt = torch._cslt_compress(pruned)
        packed_t_cusparselt = torch._cslt_compress(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUSPARSELT(dense.shape, packed_cutlass, None, packed_t_cutlass, None, bitmask)
        ```
        Fr   r   r   r   s           r=   r   z<SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort/  sX    P ..ye
	
'
 !!(C
 	
r?   Nr   r   r   c                   t        |t              rt        d      | j                  dk7  s|j                  dk7  r#t	        d| j
                  j                   d      |j                  | j                  k7  rit	        d| j
                  j                   dt        | j                         dt        |j                         d| j                   d|j                   d	      |h|j                  | j                  k7  rOt	        d| j
                  j                   dt        | j                         dt        |j                         d
      | j                  #t	        d| j
                  j                   d      t        j                  | j                  ||| j                  | j                        }| j                  r|j                         S |S )Nr   rt   r   r   z` matmul: trying to do `A=z @ B=z`, with A.dtype=z and B.dtype=zH. This operation is only supported when A and B have the same data type.z + C`, with A.dtype=B.dtype={self.dtype} and C.dtype={B.dtype}. This operation is only supported when A, B and C have the same data type.r   )r   transpose_resultalg_id)r   r   r6   r   r\   rD   rE   r-   tupler)   r"   r3   _cslt_sparse_mmr'   r(   ri   )rF   r   r   r;   r   s        r=   r   z(SparseSemiStructuredTensorCUSPARSELT._mme  s    a34l  99>QVVq[%DNN++,,UV  77djj %DNN++,,FuTZZGXFYY^_defelel_m^n o  $

|=	 BYY 
 

djj 8%DNN++,,FuTZZGXFYY^_defelel_m^n o\ \ 
 ;;%DNN++,,PQ  ''!%!?!?--C #<<3557E#Er?   r   )rE   r   r   r   r    r3   r   r   r   r   r   r   r7   r   r   r   r   r   r?   r=   r   r     s    	 G

22r2rB5b"aC6r2q!D  
#ll
	/
 
  683
#ll3
	%3
 3
l BF#F#F(0(>#F	#Fr?   r   )F) r/   collectionsr   typingr   r   r   r   r   r	   r3   )torch.sparse._semi_structured_conversionsr
   r   !torch.sparse._semi_structured_opsr   r   r   r   r   r   r   r   r   __all__r   r7   r   r   r   r   r   r   r?   r=   <module>r      s     " = = 
 
 
 ",$C" T" T"r A7\\A7A7  A7HH((B H(V}F+E }Fr?   