
    Ǆgc              	          d dl mZmZmZmZmZmZ d dlZd dlmZ d dl	m
Z
mZ ddlmZmZmZmZ erd dlmZ eeeeedf   ee   f      Zn
eZeee      Zg d	Z e
ej.                  d
      Z e
ej2                  d      Z e
ej6                  d      Zddededee   defdZ e
ej<                  d      Z e
ej@                  d      Z! e
ejD                  d      Z# e
ejH                  d      Z% G d d      Z&d Z'y)    )AnyListOptionalTupleTYPE_CHECKINGUnionN)Tensor)_add_docstr_sparse   )SparseSemiStructuredTensor$SparseSemiStructuredTensorCUSPARSELT!SparseSemiStructuredTensorCUTLASSto_sparse_semi_structured)_dtype.)addmmcheck_sparse_tensor_invariantsmmsumsoftmaxsolvelog_softmaxr   r   r   r   as_sparse_gradchecka%  
sparse.addmm(mat, mat1, mat2, *, beta=1., alpha=1.) -> Tensor

This function does exact same thing as :func:`torch.addmm` in the forward,
except that it supports backward for sparse COO matrix :attr:`mat1`.
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`.
When inputs are COO tensors, this function also supports backward for both inputs.

Supports both CSR and COO storage formats.

.. note::
    This function doesn't support computing derivaties with respect to CSR matrices.

Args:
    mat (Tensor): a dense matrix to be added
    mat1 (Tensor): a sparse matrix to be multiplied
    mat2 (Tensor): a dense matrix to be multiplied
    beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
    alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
a
  
    Performs a matrix multiplication of the sparse matrix :attr:`mat1`
    and the (sparse or strided) matrix :attr:`mat2`. Similar to :func:`torch.mm`, if :attr:`mat1` is a
    :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, out will be a
    :math:`(n \times p)` tensor.
    When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`.
    When inputs are COO tensors, this function also supports backward for both inputs.

    Supports both CSR and COO storage formats.

.. note::
    This function doesn't support computing derivaties with respect to CSR matrices.

    This function also additionally accepts an optional :attr:`reduce` argument that allows
    specification of an optional reduction operation, mathematically performs the following operation:

.. math::

    z_{ij} = \bigoplus_{k = 0}^{K - 1} x_{ik} y_{kj}

where :math:`\bigoplus` defines the reduce operator. :attr:`reduce` is implemented only for
CSR storage format on CPU device.

Args:
    mat1 (Tensor): the first sparse matrix to be multiplied
    mat2 (Tensor): the second matrix to be multiplied, which could be sparse or dense
    reduce (str, optional): the reduction operation to apply for non-unique indices
        (:obj:`"sum"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`). Default :obj:`"sum"`.

Shape:
    The format of the output tensor of this function follows:
    - sparse x sparse -> sparse
    - sparse x dense -> dense

Example::

    >>> a = torch.tensor([[1., 0, 2], [0, 3, 0]]).to_sparse().requires_grad_()
    >>> a
    tensor(indices=tensor([[0, 0, 1],
                           [0, 2, 1]]),
           values=tensor([1., 2., 3.]),
           size=(2, 3), nnz=3, layout=torch.sparse_coo, requires_grad=True)
    >>> b = torch.tensor([[0, 1.], [2, 0], [0, 0]], requires_grad=True)
    >>> b
    tensor([[0., 1.],
            [2., 0.],
            [0., 0.]], requires_grad=True)
    >>> y = torch.sparse.mm(a, b)
    >>> y
    tensor([[0., 1.],
            [6., 0.]], grad_fn=<SparseAddmmBackward0>)
    >>> y.sum().backward()
    >>> a.grad
    tensor(indices=tensor([[0, 0, 1],
                           [0, 2, 1]]),
           values=tensor([1., 0., 2.]),
           size=(2, 3), nnz=3, layout=torch.sparse_coo)
    >>> c = a.detach().to_sparse_csr()
    >>> c
    tensor(crow_indices=tensor([0, 2, 3]),
           col_indices=tensor([0, 2, 1]),
           values=tensor([1., 2., 3.]), size=(2, 3), nnz=3,
           layout=torch.sparse_csr)
    >>> y1 = torch.sparse.mm(c, b, 'sum')
    >>> y1
    tensor([[0., 1.],
            [6., 0.]], grad_fn=<SparseMmReduceImplBackward0>)
    >>> y2 = torch.sparse.mm(c, b, 'max')
    >>> y2
    tensor([[0., 1.],
            [6., 0.]], grad_fn=<SparseMmReduceImplBackward0>)
a  
sparse.sampled_addmm(input, mat1, mat2, *, beta=1., alpha=1., out=None) -> Tensor

Performs a matrix multiplication of the dense matrices :attr:`mat1` and :attr:`mat2` at the locations
specified by the sparsity pattern of :attr:`input`. The matrix :attr:`input` is added to the final result.

Mathematically this performs the following operation:

.. math::

    \text{out} = \alpha\ (\text{mat1} \mathbin{@} \text{mat2})*\text{spy}(\text{input}) + \beta\ \text{input}

where :math:`\text{spy}(\text{input})` is the sparsity pattern matrix of :attr:`input`, :attr:`alpha`
and :attr:`beta` are the scaling factors.
:math:`\text{spy}(\text{input})` has value 1 at the positions where :attr:`input` has non-zero values, and 0 elsewhere.

.. note::
    :attr:`input` must be a sparse CSR tensor. :attr:`mat1` and :attr:`mat2` must be dense tensors.

Args:
    input (Tensor): a sparse CSR matrix of shape `(m, n)` to be added and used to compute
        the sampled matrix multiplication
    mat1 (Tensor): a dense matrix of shape `(m, k)` to be multiplied
    mat2 (Tensor): a dense matrix of shape `(k, n)` to be multiplied

Keyword args:
    beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
    alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
    out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.

Examples::

    >>> input = torch.eye(3, device='cuda').to_sparse_csr()
    >>> mat1 = torch.randn(3, 5, device='cuda')
    >>> mat2 = torch.randn(5, 3, device='cuda')
    >>> torch.sparse.sampled_addmm(input, mat1, mat2)
    tensor(crow_indices=tensor([0, 1, 2, 3]),
        col_indices=tensor([0, 1, 2]),
        values=tensor([ 0.2847, -0.7805, -0.1900]), device='cuda:0',
        size=(3, 3), nnz=3, layout=torch.sparse_csr)
    >>> torch.sparse.sampled_addmm(input, mat1, mat2).to_dense()
    tensor([[ 0.2847,  0.0000,  0.0000],
        [ 0.0000, -0.7805,  0.0000],
        [ 0.0000,  0.0000, -0.1900]], device='cuda:0')
    >>> torch.sparse.sampled_addmm(input, mat1, mat2, beta=0.5, alpha=0.5)
    tensor(crow_indices=tensor([0, 1, 2, 3]),
        col_indices=tensor([0, 1, 2]),
        values=tensor([ 0.1423, -0.3903, -0.0950]), device='cuda:0',
        size=(3, 3), nnz=3, layout=torch.sparse_csr)
inputdimdtypereturnc                     |-|t        j                  | |      S t        j                  |       S |t        j                  | ||      S t        j                  | |      S )a	  Return the sum of each row of the given sparse tensor.

    Returns the sum of each row of the sparse tensor :attr:`input` in the given
    dimensions :attr:`dim`. If :attr:`dim` is a list of dimensions,
    reduce over all of them. When sum over all ``sparse_dim``, this method
    returns a dense tensor instead of a sparse tensor.

    All summed :attr:`dim` are squeezed (see :func:`torch.squeeze`), resulting an output
    tensor having :attr:`dim` fewer dimensions than :attr:`input`.

    During backward, only gradients at ``nnz`` locations of :attr:`input`
    will propagate back. Note that the gradients of :attr:`input` is coalesced.

    Args:
        input (Tensor): the input sparse tensor
        dim (int or tuple of ints): a dimension or a list of dimensions to reduce. Default: reduce
            over all dims.
        dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
            Default: dtype of :attr:`input`.

    Example::

        >>> nnz = 3
        >>> dims = [5, 5, 2, 3]
        >>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
                           torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
        >>> V = torch.randn(nnz, dims[2], dims[3])
        >>> size = torch.Size(dims)
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> S = torch.sparse_coo_tensor(I, V, size)
        >>> S
        tensor(indices=tensor([[2, 0, 3],
                               [2, 4, 1]]),
               values=tensor([[[-0.6438, -1.6467,  1.4004],
                               [ 0.3411,  0.0918, -0.2312]],

                              [[ 0.5348,  0.0634, -2.0494],
                               [-0.7125, -1.0646,  2.1844]],

                              [[ 0.1276,  0.1874, -0.6334],
                               [-1.9682, -0.5340,  0.7483]]]),
               size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo)

        # when sum over only part of sparse_dims, return a sparse tensor
        >>> torch.sparse.sum(S, [1, 3])
        tensor(indices=tensor([[0, 2, 3]]),
               values=tensor([[-1.4512,  0.4073],
                              [-0.8901,  0.2017],
                              [-0.3183, -1.7539]]),
               size=(5, 2), nnz=3, layout=torch.sparse_coo)

        # when sum over all sparse dim, return a dense tensor
        # with summed dims squeezed
        >>> torch.sparse.sum(S, [0, 1, 3])
        tensor([-2.6596, -1.1450])
    )r   )torch_sparse_sum)r   r   r   s      ]/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/sparse/__init__.pyr   r      s`    r }?$$UC00$$U++?$$UCu==$$U%88    a  
sparse.softmax(input, dim, *, dtype=None) -> Tensor

Applies a softmax function.

Softmax is defined as:

:math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}`

where :math:`i, j` run over sparse tensor indices and unspecified
entries are ignores. This is equivalent to defining unspecified
entries as negative infinity so that :math:`exp(x_k) = 0` when the
entry with index :math:`k` has not specified.

It is applied to all slices along `dim`, and will re-scale them so
that the elements lie in the range `[0, 1]` and sum to 1.

Args:
    input (Tensor): input
    dim (int): A dimension along which softmax will be computed.
    dtype (:class:`torch.dtype`, optional): the desired data type
        of returned tensor.  If specified, the input tensor is
        casted to :attr:`dtype` before the operation is
        performed. This is useful for preventing data type
        overflows. Default: None
a  
sparse.spsolve(input, other, *, left=True) -> Tensor

Computes the solution of a square system of linear equations with
a unique solution. Its purpose is similar to :func:`torch.linalg.solve`,
except that the system is defined by a sparse CSR matrix with layout
`sparse_csr`.

Args:
    input (Tensor): a sparse CSR matrix of shape `(n, n)` representing the
        coefficients of the linear system.
    other (Tensor): a dense matrix of shape `(n, )` representing the right-hand
        side of the linear system.
    left (bool, optional): whether to solve the system for `input @ out = other`
        (default) or `out @ input = other`. Only `left=True` is supported.
a  
sparse.log_softmax(input, dim, *, dtype=None) -> Tensor

Applies a softmax function followed by logarithm.

See :class:`~torch.sparse.softmax` for more details.

Args:
    input (Tensor): input
    dim (int): A dimension along which softmax will be computed.
    dtype (:class:`torch.dtype`, optional): the desired data type
        of returned tensor.  If specified, the input tensor is
        casted to :attr:`dtype` before the operation is
        performed. This is useful for preventing data type
        overflows. Default: None
a(  
sparse.spdiags(diagonals, offsets, shape, layout=None) -> Tensor

Creates a sparse 2D tensor by placing the values from rows of
:attr:`diagonals` along specified diagonals of the output

The :attr:`offsets` tensor controls which diagonals are set.

- If :attr:`offsets[i]` = 0, it is the main diagonal
- If :attr:`offsets[i]` < 0, it is below the main diagonal
- If :attr:`offsets[i]` > 0, it is above the main diagonal

The number of rows in :attr:`diagonals` must match the length of :attr:`offsets`,
and an offset may not be repeated.

Args:
    diagonals (Tensor): Matrix storing diagonals row-wise
    offsets (Tensor): The diagonals to be set, stored as a vector
    shape (2-tuple of ints): The desired shape of the result
Keyword args:
    layout (:class:`torch.layout`, optional): The desired layout of the
        returned tensor. ``torch.sparse_coo``, ``torch.sparse_csc`` and ``torch.sparse_csr``
        are supported. Default: ``torch.sparse_coo``

Examples:

Set the main and first two lower diagonals of a matrix::

    >>> diags = torch.arange(9).reshape(3, 3)
    >>> diags
    tensor([[0, 1, 2],
            [3, 4, 5],
            [6, 7, 8]])
    >>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3))
    >>> s
    tensor(indices=tensor([[0, 1, 2, 1, 2, 2],
                           [0, 1, 2, 0, 1, 0]]),
           values=tensor([0, 1, 2, 3, 4, 6]),
           size=(3, 3), nnz=6, layout=torch.sparse_coo)
    >>> s.to_dense()
    tensor([[0, 0, 0],
            [3, 1, 0],
            [6, 4, 2]])


Change the output layout::

    >>> diags = torch.arange(9).reshape(3, 3)
    >>> diags
    tensor([[0, 1, 2],[3, 4, 5], [6, 7, 8])
    >>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3), layout=torch.sparse_csr)
    >>> s
    tensor(crow_indices=tensor([0, 1, 3, 6]),
           col_indices=tensor([0, 0, 1, 0, 1, 2]),
           values=tensor([0, 3, 1, 6, 4, 2]), size=(3, 3), nnz=6,
           layout=torch.sparse_csr)
    >>> s.to_dense()
    tensor([[0, 0, 0],
            [3, 1, 0],
            [6, 4, 2]])

Set partial diagonals of a large output::

    >>> diags = torch.tensor([[1, 2], [3, 4]])
    >>> offsets = torch.tensor([0, -1])
    >>> torch.sparse.spdiags(diags, offsets, (5, 5)).to_dense()
    tensor([[1, 0, 0, 0, 0],
            [3, 2, 0, 0, 0],
            [0, 4, 0, 0, 0],
            [0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0]])

.. note::

    When setting the values along a given diagonal the index into the diagonal
    and the index into the row of :attr:`diagonals` is taken as the
    column index in the output. This has the effect that when setting a diagonal
    with a positive offset `k` the first value along that diagonal will be
    the value in position `k` of the row of :attr:`diagonals`

Specifying a positive offset::

    >>> diags = torch.tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
    >>> torch.sparse.spdiags(diags, torch.tensor([0, 1, 2]), (5, 5)).to_dense()
    tensor([[1, 2, 3, 0, 0],
            [0, 2, 3, 0, 0],
            [0, 0, 3, 0, 0],
            [0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0]])
c                   Z    e Zd ZdZed        Zed        Zed        Zd
dZd Z	d Z
d Zy	)r   a  A tool to control checking sparse tensor invariants.

    The following options exists to manage sparsr tensor invariants
    checking in sparse tensor construction:

    1. Using a context manager:

       .. code:: python

           with torch.sparse.check_sparse_tensor_invariants():
               run_my_model()

    2. Using a procedural approach:

       .. code:: python

           prev_checks_enabled = torch.sparse.check_sparse_tensor_invariants.is_enabled()
           torch.sparse.check_sparse_tensor_invariants.enable()

           run_my_model()

           if not prev_checks_enabled:
               torch.sparse.check_sparse_tensor_invariants.disable()

    3. Using function decoration:

       .. code:: python

           @torch.sparse.check_sparse_tensor_invariants()
           def run_my_model():
               ...

           run_my_model()

    4. Using ``check_invariants`` keyword argument in sparse tensor constructor call.
       For example:

       >>> torch.sparse_csr_tensor([0, 1, 3], [0, 1], [1, 2], check_invariants=True)
       Traceback (most recent call last):
         File "<stdin>", line 1, in <module>
       RuntimeError: `crow_indices[..., -1] == nnz` is not satisfied.
    c                  >    t         j                  j                         S )a;  Return True if the sparse tensor invariants checking is enabled.

        .. note::

            Use :func:`torch.sparse.check_sparse_tensor_invariants.enable` or
            :func:`torch.sparse.check_sparse_tensor_invariants.disable` to
            manage the state of the sparse tensor invariants checks.
        )r   _C_check_sparse_tensor_invariants r"   r!   
is_enabledz)check_sparse_tensor_invariants.is_enabled  s     xx7799r"   c                  B    t         j                  j                  d       y)ax  Enable sparse tensor invariants checking in sparse tensor constructors.

        .. note::

            By default, the sparse tensor invariants checks are disabled. Use
            :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled` to
            retrieve the current state of sparse tensor invariants checking.

        .. note::

            The sparse tensor invariants check flag is effective to all sparse
            tensor constructors, both in Python and ATen.

        The flag can be locally overridden by the ``check_invariants``
        optional argument of the sparse tensor constructor functions.
        TNr   r%   #_set_check_sparse_tensor_invariantsr'   r"   r!   enablez%check_sparse_tensor_invariants.enable  s    $ 	44T:r"   c                  B    t         j                  j                  d       y)zDisable sparse tensor invariants checking in sparse tensor constructors.

        See :func:`torch.sparse.check_sparse_tensor_invariants.enable` for more information.
        FNr*   r'   r"   r!   disablez&check_sparse_tensor_invariants.disable  s     	44U;r"   c                      || _         d | _        y N)statesaved_state)selfr,   s     r!   __init__z'check_sparse_tensor_invariants.__init__
  s    
+/r"   c                     | j                   t        d      | j                         | _         t        j                  j                  | j                         y )NzqThis context manager instance is already activated. Use a different context manager instance for context nesting.)r2   RuntimeErrorr(   r   r%   r+   r1   )r3   s    r!   	__enter__z(check_sparse_tensor_invariants.__enter__  sH    'Q   ??,44TZZ@r"   c                     | j                   J t        j                  j                  | j                          d | _         y r0   )r2   r   r%   r+   )r3   typevalue	tracebacks       r!   __exit__z'check_sparse_tensor_invariants.__exit__  s4    +++44T5E5EFr"   c                       fd}|S )Nc                  v     t              j                        5   | i |cd d d        S # 1 sw Y   y xY wr0   )r9   r1   )argskwargsmthr3   s     r!   test_mthz9check_sparse_tensor_invariants.__call__.<locals>.test_mth  s7    dDJJ' ,D+F+, , ,s   /8r'   )r3   rA   rB   s   `` r!   __call__z'check_sparse_tensor_invariants.__call__  s    	, r"   N)T)__name__
__module____qualname____doc__staticmethodr(   r,   r.   r4   r7   r<   rC   r'   r"   r!   r   r     sY    )V 	: 	: ; ;& < <0A r"   r   c                       fd}|S )al  Decorate function, to extend gradcheck for sparse tensors.

    Decorator for torch.autograd.gradcheck or its functools.partial
    variants that extends the gradcheck function with support to input
    functions that operate on or/and return sparse tensors.

    The specified gradcheck function itself is guaranteed to operate
    on strided tensors only.

    For example:

    >>> gradcheck = torch.sparse.as_sparse_gradcheck(torch.autograd.gradcheck)
    >>> x = torch.tensor([[0, 1], [2, 3]], dtype=torch.float64).to_sparse_coo().requires_grad_(True)
    >>> gradcheck(lambda x: x.to_sparse_csr(), x)
    True
    c                    	
 |j                  dd      t        j                  t        j                  t        j                  t        j
                  t        j                  ht        j                  t        j                  t        j
                  t        j                  h
t        j
                  t        j                  h	d	fd}
fd fd}| ||      f} |i |S )z
        Create gradcheck with support for sparse tensors.

        Same as :func:`torch.autograd.gradcheck` but with sparse tensors inputs and outputs support.
        maskedF__STRIDED_REPRESENTATION__c                 X   t        | t        t        f      s| f} g }| D ]~  }t        |t        j                        rO|j
                  rB|j                  v r3t        |j                  |j                        }	s|j                  |j                         z
  |j                         z
  }|j                  
v r#|j                         j                  |dz   |dz    nd}t        j                  |j                  |j                  t        j                        j!                  |j                  ||j                               }|j#                         j%                  |      }|j                  t        j&                  u r@|j)                  |j+                         |j-                                |j/                         }n|j                  t        j0                  t        j2                  hv r@|j)                  |j5                         |j7                                |j                         }n?|j)                  |j9                         |j;                                |j                         }|j=                  ||j?                  d	      f       n|jA                  |        t        |      S )
ziConvert differentiable non-strided tensors to a representation containing differentiable strided tensors.)layoutshaper      N)devicer   )rN   	blocksize	dense_dim)indicesis_coalesced)compressed_indicesplain_indicesT)!
isinstancelisttupler   r	   requires_gradrN   dictrO   ndimrS   
sparse_dimvaluesonesrQ   bool	to_sparseto_densesparse_mask
sparse_cooupdate_indicesrU   _values
sparse_csr
sparse_bsrcrow_indicescol_indicesccol_indicesrow_indicesextendrequires_grad_append)r?   new_argsobjd	batch_dimrR   	full_maskr_   STRIDED_REPRESENTATIONrK   sparse_block_layoutssparse_layoutss           r!   !convert_to_strided_representationzeas_sparse_gradcheck.<locals>.gradcheck_with_sparse_support.<locals>.convert_to_strided_representationN  s#   dT5M2w"$H ,)sELL1))

n4CJJcii@A!$'HHs}}$>AQ$Q	  #zz-AA  JJL..y1}y1}M!% "
 %*JJIIcjj

%#)#&::&/&)mmo $  " "lln88CzzU%5%55$'LLNAQAQAS !  "%(8(8%:J:J'KK/2/?/?/A*-//*; !  "%/2/?/?/A*-//*; !  "%OO/F4I4I$4OP OOC(Y,)Z ?"r"   c                    g }t        |       } | r| j                  d      }|k(  r| j                  d      | j                  d      }}|d   t        j                  u r#t        j                  |d   ||d   |d         }n@|d   v r't        j
                  |d   |d   ||d   |d   	      }nt        d
|d    d      |j                  |       | rt        |      S )zNRestore non-strided differentiable tensosr from their strided representations.r   rN   rT   rO   rU   )sizerU   rV   rW   )r|   rN   zconversion of z! strided representation to tensor)	rY   popr   re   sparse_coo_tensorsparse_compressed_tensorNotImplementedErrorrq   rZ   )r?   rr   art   r_   rw   sparse_compressed_layoutss        r!   #restore_from_strided_representationzgas_sparse_gradcheck.<locals>.gradcheck_with_sparse_support.<locals>.restore_from_strided_representation  s    H:DHHQK.. $TXXa[vA{e&6&66!33iL"!"7)*>):	 8(AA!::23o."!"7#$X; 2,Qx[M9Z[  "/ 0 ?"r"   c                       |       } |i |}t        |t        t        f      rt        |      n|f}t        fd|D              }t        |t        t        f      r|S |d   S )Nc              3      K   | ]L  }t        |t        j                        r,|j                  r |j                  v r|j                         n| N yw))masked_gradN)rX   r   r	   r[   rN   rc   ).0orK   ry   s     r!   	<genexpr>zcas_sparse_gradcheck.<locals>.gradcheck_with_sparse_support.<locals>.func_wrapper.<locals>.<genexpr>  sS      	$  "!U\\2N2 JJ6J2 		$s   AAr   )rX   rY   rZ   )	r?   r@   restored_argsoutputsstrided_outputsfuncrK   r   ry   s	        r!   func_wrapperzPas_sparse_gradcheck.<locals>.gradcheck_with_sparse_support.<locals>.func_wrapper  s    ?EM M4V4G #-WtUm"Dg7*  $ 	$ )	$ 	O ge}5   %Q'r"   )r}   r   re   ri   
sparse_cscrj   
sparse_bsc)r   inputsr@   rz   r   r?   rw   rK   r   rx   r   ry   	gradchecks   `     @@@@@@r!   gradcheck_with_sparse_supportz:as_sparse_gradcheck.<locals>.gradcheck_with_sparse_support7  s     He,
 	%
! !& 0 0%2B2BC!=2	#h	#<	6 ?GH$)&))r"   r'   )r   r   s   ` r!   r   r   %  s    $F*P )(r"   )NN)(typingr   r   r   r   r   r   r   r	   torch._Cr
   r   semi_structuredr   r   r   r   torch.typesr   DTypeint	DimOrDims__all___sparse_addmmr   
_sparse_mmr   sparse_sampled_addmmsampled_addmmr   _sparse_softmaxr   _spsolvespsolve_sparse_log_softmaxr   _spdiagsspdiagsr   r   r'   r"   r!   <module>r      sc   D C   )  +sE#s(OT#Y>?@I Es$I 		2 GJZ   14nB9v B9I B9Xe_ B9PV B9J > ( * Y\~m m`Z)r"   