
    Ǆg_              "          d Z ddlmZmZmZmZmZ ddlZddlmZ ddl	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZ ddgZ G d	 de      Zd
de de de de
 d	z   e_         dee   dee   dee   dee   dee   dedededededededededefdZdee   dee   dee   dee   dee   dedededededededededefdZ ee      	 	 	 	 	 	 d"dee   dee   dee   dee   dee   ded ee   dededededededededef d!       Zy)#z'Implementation for the RAdam algorithm.    )castListOptionalTupleUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTRAdamradamc                        e Zd Z	 	 	 	 	 dddddddedeeef   deeef   deded	ed
e	e   dededef fdZ
 fdZd Zedd       Z xZS )r   FN)foreachmaximize
capturabledifferentiableparamslrbetasepsweight_decaydecoupled_weight_decayr   r   r   r   c                   t        |t              r|j                         dk7  rt        d      d|k  st        d|       d|k  st        d|       d|d   cxk  rdk  sn t        d|d          d|d   cxk  rdk  sn t        d	|d          d|k  st        d
|       t	        |||||||	||
	      }t
        |   ||       y )Nr	   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )	r   r    r!   r"   r   r   r   r#   r   )
isinstancer   numel
ValueErrordictsuper__init__)selfr   r   r    r!   r"   r#   r   r   r   r   defaults	__class__s               Y/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/optim/radam.pyr,   zRAdam.__init__   s     b&!bhhjAo:;;by6rd;<<cz6se<==eAh$$B58*MNNeAh$$B58*MNNl";L>JKK%!#9)

 	*    c                 X   t         |   |       | j                  D ]
  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d	         rGt        |d	         }|d   r*t        j                  |t               |j                  
      nt        j                  |t                     |d	<     y )Nr   r   Fr   r#   r   r   r   stepdtypedevicer5   )r+   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r6   )r-   r;   grouppp_statestep_valr/   s         r0   r8   zRAdam.__setstate__F   s   U#&& 	EY-Z/-u55u=\518_ 
**..B/w<1$U__WV_-M$WV_5H
 !. $,=,? #\\(:K:MN FO	
	r1   c                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt               	      |	d
<   t        j                  |t        j                        |	d<   t        j                  |t        j                        |	d<   |j                  |	d          |j                  |	d          |j                  |	d
          r |S )NFr   z'RAdam does not support sparse gradientsr   r    r4   r%   r7   r3   )memory_formatexp_avg
exp_avg_sq)gradr>   
is_complexappend	is_sparseRuntimeErrorr;   r=   zerosr   r6   rA   
zeros_likepreserve_format)
r-   rB   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexrC   r;   s
             r0   _init_groupzRAdam._init_groupZ   sM    x 	2Avv!u//22 ''*66##&'PQQQVV$

1u:? !. B.?.A!((S"\\#5F5HI &M (-'7'7)>)>(E)$ +0*:*:)>)>+E,' i 01""5#67""5=17	2: r1   c                    | j                          d}|$t        j                         5   |       }ddd       | j                  D ]x  }g }g }g }g }g }t	        t
        t        t        f   |d         \  }	}
| j                  ||||||      }t        ||||||	|
|d   |d   |d   |d   |d   |d   |d	   |d
   |       z |S # 1 sw Y   xY w)zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr    r   r"   r!   r   r   r   r   r#   )beta1beta2r   r"   r!   r   r   r   r   r#   rX   )	 _cuda_graph_capture_health_checkr>   enable_gradr9   r   r   r@   rY   r   )r-   closurelossrB   rS   rT   rU   rV   rW   r[   r\   rX   s               r0   r3   z
RAdam.step}   s    	--/""$ !y! && 	E-/"$E%'H(*K(*KeUl 3U7^DLE5**'+{K  ;">2%Lz*i( .$%56',-E'F'!	> E! !s   CC)gMbP?)g?g+?g:0yE>r   FN)__name__
__module____qualname__r   r   r@   r   r   boolr   r,   r8   rY   r   r3   __classcell__)r/   s   @r0   r   r      s     $(%1',&+ #' $&+&+ %- &+ UE\"	&+
 &+ &+ !%&+ $&+ &+ &+ &+P(!F "- "-r1   a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, Tensor, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to use decoupled weight
            decay as in AdamW to obtain RAdamW (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    r   rT   rU   rV   rW   r[   r\   r   r"   r!   r#   r   r   r   rX   c       
           	 t        |       D ]L  \  }}|s||   n||    }||   }||   ||   }t        j                  j                         s\|rZt	               }|j
                  j                  |j
                  j                  k(  r|j
                  j                  |v sJ d| d       t        j                  |      rTt        j                  |      }t        j                  |      }t        j                  |      }t        j                        |dz  }|r|n
t        |      }|dk7  r-|
r|j                  d||z  z
         n|j                  ||      }|j                  |d|z
         j                  |      j                  ||d|z
         d||z  z
  }d||z  z
  ||z  }dd|z
  z  dz
  d|z  ||z  z  z  z
  fd}	fd	}|rBt        j                  d
kD   |        |       z  d      }|j                  ||z  |z  d       
d
kD  r(|j                  ||z   |       z   |       z  d       7|j                  ||z  d       O y )NIIf capturable=True, params and state_steps must be on supported devices: .r	   r   alpha)value   c                  D    dz
  dz
  z   z   dz
   dz
  z  z  z  dz  S )N   rm         ?rG   )rho_infrho_ts   r0   _compute_rectz+_single_tensor_radam.<locals>._compute_rect=  sI    19 aKGaK058:  r1   c                  ~    j                         } r| j                        } n| j                        } dz  | z  S )Nrp   )sqrtaddadd_)exp_avg_sq_sqrtbias_correction2r   r!   rJ   s    r0   _compute_adaptive_lrz2_single_tensor_radam.<locals>._compute_adaptive_lrE  sB    (oo/O"1"5"5c":"1"6"6s";$c)_<<r1         @r&   g      )	enumerater>   _utilsis_compilingr   r6   typerL   view_as_realr   mul_rv   lerp_addcmul_whererw   )r   rT   rU   rV   rW   r[   r\   r   r"   r!   r#   r   r   r   rX   iparamrK   rI   step_tcapturable_supported_devicesr3   bias_correction1bias_corrected_exp_avgrs   rz   updatery   rJ   rq   rr   s            ` `               @@@@r0   _single_tensor_radamr      s   $ f% ND5'uQxeAhY1+ ^
Q ||((*z+L+N(!!V]]%7%77LL%%)EE{ [[wZxxyz{F E"&&u-E%%d+D((1G++J7J 	!#vF);1%

1rL001xx\x: 	dAI&''d!e)'Dud{?ud{? ")+;!; q5y/A%!d(eTk25EEE		= [[]_/C/EEsF JJ-2V;4JHs{

**,- $o&    

1B6d
C]NDr1   c       
         F  * t        |       dk(  ry |rJ d       t        j                  j                         s7|r5t	        d      *t        *fdt        | |      D              sJ d* d       t        j                  | ||||g      }|j                         D ]Y  \  \  }}}}}}t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }t        j                  j                         s=|d   j                  r.t        j                  |t        j                  dd	
      d       nt        j                  |d       |rt!        ||||       |rt        j"                  |      }dd|z
  z  dz
  }|rt        j$                  ||      }t        j&                  |       t        j                  |d       t        j$                  ||      }t        j(                  ||       t        j(                  |d       t        j*                  ||       t        j&                  |       t        j                  ||       |}n?|D cg c]4  }|dt-        |      z  |t-        |      z  z  d|t-        |      z  z
  z  z
  6 }}|dk7  rR|
rt        j(                  |d||z  z
         n3|rt        j                  |||       nt        j.                  |||      }t        j0                  ||d|z
         t        j(                  ||       t        j2                  |||d|z
         ~|r7t        j4                  |d      } t        j4                  |d      }!t        j(                  | |!       ~!t        j(                  | |       |dz
  |dz
  z  }t        j6                  ||      }"t        j*                  | |"       ~"t        j8                  |        t        | |      D #$cg c]  \  }#}$t        j:                  |$dkD  |#d      ! }%}#}$~ ~|%D %cg c]  }%t        j:                  |%dkD  dd       }&}%t        j(                  |&|       t        j$                  ||      }t        j&                  |       t        j                  |d       t        j*                  |&|       t        j&                  |&       t        j$                  ||      }t        j&                  |       t        j                  |d       t        j8                  |       t        j(                  ||       t        j(                  |%       ~%t        j&                  |       t        j*                  ||       ~n|D $cg c])  }$|$dkD  r |$dz
  |$dz
  z  |z  |dz
  |dz
  z  |$z  z  dz  nd+ }%}$|%D %cg c]  }%|%dkD  rdnd }'}%|D cg c]  }d|t-        |      z  z
   }}t        |'|      D %(cg c]  \  }%}(||%z  |(z  dz   }&}%}(t        |%|      D %(cg c]&  \  }}%}(d|t-        |      z  z
  dz  ||%z  |(z  z  dz  ( }}%}}(t        j<                  |      })t        j                  |)|	       t        j*                  |)|       t        j>                  |)       t        j                  |)|&       t        j2                  |||)       \ y c c}w c c}$}#w c c}%w c c}$w c c}%w c c}w c c}(}%w c c}(}%}w )Nr   z#_foreach ops don't support autogradF)supports_xlac              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wra   )r6   r   ).0rC   r3   r   s      r0   	<genexpr>z&_multi_tensor_radam.<locals>.<genexpr>}  sQ      
 4 HHMMT[[--- >!==>
s   AArh   ri   r&   cpu)r6   rj   r	   rm   ro   r{   r%      rp   ) r=   r>   r}   r~   r   allzipr   "_group_tensors_by_device_and_dtypevaluesr   r   r   is_cpu_foreach_add_rA   r   _foreach_neg_foreach_pow_foreach_neg__foreach_mul__foreach_div_r   _foreach_add_foreach_lerp__foreach_addcmul__foreach_sub_foreach_mul_foreach_sqrt_r   _foreach_sqrt_foreach_reciprocal_)+r   rT   rU   rV   rW   r[   r\   r   r"   r!   r#   r   r   r   rX   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_avg_sqs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_avg_sqsgrouped_state_stepsrq   r   ry   
rho_t_listr3   numsub2denomnrr   rectunrect_step_sizeunrectifiedbcbufferr   s+                                             @r0   _multi_tensor_radamr   a  sC   $ 6{aDDD <<$$&:'H(
$  
 v{3
 
 	w WWsVttuv		w 
  BB	+{;O ""$[J 		 	d6lO<T&\>:V.?@"4<1EF"4<1EF ||((*/B1/E/L/L#U\\#e%DC  3Q7/?AT !..}=M q5y/A%
 $11%9LM 01 0!4$11%9LM 02EF 0!4 02BC 01 0':)J 0  T"#Jt,,. u
4 00022J  1%##NA\8I4IJ ''%~\ %*$6$6%~\%M
 	-}a%iH/7q5y	

 $$Z3C%%j!4DT*W-{w{3G&&z7;EU+  % BES*AU5=QECKC0D  LPQDD1Hc3 ?QQ 0"5$11%9LM 01 0!4 02BC 01$11%9LM 01 0!4  !12 0"5 0$7 01 02BC  (  19 QYqy"  !!4u<>
  D  ?CCdq1c1CKC ;N 26EZ---    7:+GW6X *2$dR2%   
 '**=tEU&V   "D$ ez$///C7BINKbP   
 $$%89FC(F$45""6*F$45 	0@&Iw[Jd^
  R* D   s0   	9[7$[<!\%.\\/\\+\
)single_tensor_fnr   c                B   t        d |D              st        d      |t        | |d      \  }}|r)t        j                  j                         rt        d      |r%t        j                  j                         st        }nt        } || ||||||||||
||||	       y)zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c              3   P   K   | ]  }t        |t        j                           y wra   )r'   r>   r   )r   ts     r0   r   zradam.<locals>.<genexpr>>  s     @qz!U\\*@s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)
r[   r\   r   r"   r!   r   r#   r   r   rX   )r   rO   r   r>   jitis_scriptingr   r   )r   rT   rU   rV   rW   r#   r   r   r   rX   r   r[   r\   r   r"   r!   r   funcs                     r0   r   r   $  s    4 @K@@^
 	
 1Ne

7 599))+STTuyy--/"#!5%r1   )FNFFFF)__doc__typingr   r   r   r   r   r>   r   	optimizerr
   r   r   r   r   r   r   r   r   r   r   r   r   __all__r   r@   re   r   r   r   rG   r1   r0   <module>r      s   / 5 5     " G
NI Nd2f	 
 		 		 		 	gK ``DL`D<`D 6l`D f	`D
 f`D `D `D 	`D `D 
`D !`D `D `D `D  !`DF@JL@J<@J 6l@J f	@J
 f@J @J @J 	@J @J 
@J !@J @J @J @J  !@JF  1EF $)" ;L;<; 6l; f	;
 f; !; d^; ; ; ; ; ;  !;" 	#;$ %;& 
'; G;r1   