
    ǄgC                         d dl mZmZmZmZmZ d dlZd dlmZ ddlm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZ ddgZ G d de      Zd	d
e de de de	 d	z   e_        dee   dee   dee   dee   dee   dededededededededefdZdee   dee   dee   dee   dee   dededededededededefdZ ee      	 	 	 	 	 d dee   dee   dee   dee   dee   dee   dededededededededefd       Zy)!    )castListOptionalTupleUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdamaxadamaxc                        e Zd Z	 	 	 	 	 ddddddedeeef   deeef   dededee	   d	e	d
e	de	f fdZ
 fdZd Zedd       Z xZS )r   F)maximizedifferentiable
capturableparamslrbetasepsweight_decayforeachr   r   r   c          
         t        |t              r|j                         dk7  rt        d      d|k  st        d|       d|k  st        d|       d|d   cxk  rdk  sn t        d|d          d|d   cxk  rdk  sn t        d	|d          d|k  st        d
|       t	        ||||||||	      }
t
        |   ||
       y )Nr	   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )r   r   r    r!   r"   r   r   r   )
isinstancer   numel
ValueErrordictsuper__init__)selfr   r   r   r    r!   r"   r   r   r   defaults	__class__s              Z/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/optim/adamax.pyr+   zAdamax.__init__   s     b&!bhhjAo:;;by6rd;<<cz6se<==eAh$$B58*MNNeAh$$B58*MNNl";L>JKK%)!	
 	*    c                 0   t         |   |       | j                  D ]  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d         rGt        |d         }|d   r*t        j                  |t               |j                  	      nt        j                  |t               
      |d<     y )Nr"   r   Fr   r   r   r   stepdtypedevicer4   )r*   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r5   )r,   r:   grouppp_statestep_valr.   s         r/   r7   zAdamax.__setstate__C   s    U#&& 	EY-Z/-u5\518_ 
**..B/w<1$U__WV_-M$WV_5H
 !. $,=,? #\\(:K:MN FO	
	r0   c                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt               	      |	d
<   t        j                  |t        j                        |	d<   t        j                  |t        j                        |	d<   |j                  |	d          |j                  |	d          |j                  |	d
          r |S )NFr   z(Adamax does not support sparse gradientsr   r    r3   r$   r6   r2   )memory_formatexp_avgexp_inf)gradr=   
is_complexappend	is_sparseRuntimeErrorr:   r<   zerosr   r5   r@   
zeros_likepreserve_format)
r,   rA   params_with_gradgradsexp_avgsexp_infsstate_stepshas_complexrB   r:   s
             r/   _init_groupzAdamax._init_groupV   sO    x 	.Avv~5++A..K##A&vv"#MNNLL JJqME 5zQ \* KK*;*=ahhOc1B1DE f
 $)#3#3U%:%:$i  $)#3#3U%:%:$i  OOE),-OOE),-uV}-7	.: r0   c                 z   | j                          d}|$t        j                         5   |       }ddd       | j                  D ]g  }g }g }g }g }g }|d   \  }	}
|d   }|d   }|d   }|d   }|d   }|d   }|d	   }| j	                  ||||||      }t        |||||||	|
|||||||
       i |S # 1 sw Y   xY w)zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r    r   r!   r"   r   r   r   )
r    beta1beta2r   r!   r"   r   r   r   rW   ) _cuda_graph_capture_health_checkr=   enable_gradr8   rX   r   )r,   closurelossrA   rR   rS   rT   rU   rV   rZ   r[   r    r   r!   r"   r   r   r   rW   s                      r/   r2   zAdamax.stepy   s$    	--/""$ !y! && $	E-/"$E%'H%'H(*K >LE5,CtB 0LI&GZ(H"#34N|,J**'(KK  )!-%')$	L S! !s   B11B:)gMb`?)g?g+?g:0yE>r   NN)__name__
__module____qualname__r   r   r?   r   r   r   boolr+   r7   rX   r   r2   __classcell__)r.   s   @r/   r   r      s     $(%1"&$+ $ $+$+ %- $+ UE\"	$+
 $+ $+ $$+ $+ $+ $+L&!F "4 "4r0   a  Implements Adamax algorithm (a variant of Adam based on infinity norm).

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, Tensor, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980

    r   rS   rT   rU   rV   r    rZ   r[   r   r!   r   r   r   rW   c       	            t        |       D ]e  \  }}||   }|
s|n| }||   }||   }||   }t        j                  j                         s\|rZt	               }|j
                  j                  |j
                  j                  k(  r|j
                  j                  |v sJ d| d       |dz  }|	dk7  r|j                  ||	      }t        j                  |      rTt        j                  |      }t        j                  |      }t        j                  |      }t        j                  |      }|j                  |d|z
         |sEt        j                  |j                  |      |j                         j                  |      |       nt        j                  |j                  |      j!                  d      |j                         j                  |      j#                  d      gd      }|j%                  t        j&                  |dd             |r2||z  dz
  }|j)                  |       ||z  }|j+                  ||       ;d|t-        |      z  z
  }||z  }|j+                  ||| 	       h y )
NIIf capturable=True, params and state_steps must be on supported devices: .r	   r   alpha)outF)keepdim)value)	enumerater=   _utilsis_compilingr   r5   typeaddrK   view_as_reallerp_maximummul_absadd_cat	unsqueeze
unsqueeze_copy_amaxdiv_addcdiv_r   )r   rS   rT   rU   rV   r    rZ   r[   r   r!   r   r   r   rW   iparamrJ   rH   rI   step_tcapturable_supported_devicesnorm_bufneg_bias_correctiondenombias_correctionclrs                             r/   _single_tensor_adamaxr      sE   " f% 695Qx#t$1+1+Q ||((*z+L+N(!!V]]%7%77LL%%)EE{ [[wZxxyz{F
 	!188E86DE"&&u-E%%d+D((1G((1G 	dAI&MMU#
$ yye$..q1488:??33G3R3RST3UVH MM%**Xq%@A #(-!"3$$R(11ENN7E*%:f+="==O&CNN7GC4N8m69r0   c       	   	         |rJ d       t        |       dk(  ry t        j                  j                         s7|r5t	        d      t        fdt        | |      D              sJ d d       t        j                  | ||||g      }|j                         D ]  \  \  }}}}}}t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }|rt        ||||       |
rt        j                  |      }t        j                  j                         s=|d   j                  r.t        j                   |t        j"                  dd	
      d       nt        j                   |d       |	dk7  r3|
rt        j                   |||	       nt        j$                  |||	      }t        j&                  ||d|z
         t        j(                  ||       |
s|	dk(  rt        j*                  |      }nt        j,                  |       t        j                   ||       t        j.                  ||       |rqt        j0                  ||      }t        j2                  |d       t        j4                  ||       t        j6                  ||      }t        j8                  |||       Q|D cg c]  }d|t;        |      z  z
   }}|D cg c]  }t;        |      |z  dz   }}t        j8                  ||||        y c c}w c c}w )Nz#_foreach ops don't support autogradr   F)supports_xlac              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wr`   )r5   rq   ).0rB   r2   r   s      r/   	<genexpr>z'_multi_tensor_adamax.<locals>.<genexpr>G  sQ      
 4 HHMMT[[--- >!==>
s   AArg   rh   r%   cpu)r5   ri   r	   )r<   r=   ro   rp   r   allzipr   "_group_tensors_by_device_and_dtypevaluesr   r   r   r   _foreach_negis_cpu_foreach_add_r@   _foreach_add_foreach_lerp__foreach_mul__foreach_abs_foreach_abs__foreach_maximum__foreach_pow_foreach_sub__foreach_div__foreach_mul_foreach_addcdiv_r   ) r   rS   rT   rU   rV   r    rZ   r[   r   r!   r   r   r   rW   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_infs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_infsgrouped_state_stepsbias_correctionsr   r2   bc	step_sizer   s                                   @r/   _multi_tensor_adamaxr   ,  s6   " DDD
6{a <<$$&:'H(
$  
 v{3
 
 	w WWsVttuv		w 
  BB	(K8O ""$I 		 	d6lO<T&\>:V.?@V.?@"4<1EF/?AQ !..}=M ||((*/B1/E/L/L#U\\#e%DC  3Q71##M>V % 2 2!>!
 	-}a%iH 	,e4 LA-!..}=M.M3/ 0-@ $11%9LM 0!4 0"5&&'79IJE##N4DeL ;N 26EZ---    ?OO*R.2-3OIO## 02BIOIF  Ps   .MM)single_tensor_fnr"   c
                |   t         j                  j                         st        d |D              st	        d      |t        | |d      \  }}|r)t         j                  j                         rt	        d      |r%t         j                  j                         st        }nt        } || |||||
|||||||	|       y)zrFunctional API that performs adamax algorithm computation.

    See :class:`~torch.optim.Adamax` for details.
    c              3   P   K   | ]  }t        |t        j                           y wr`   )r&   r=   r   )r   ts     r/   r   zadamax.<locals>.<genexpr>  s       3()
1ell#3s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)	r    rZ   r[   r   r!   r   r   rW   r   )
r=   ro   rp   r   rN   r   jitis_scriptingr   r   )r   rS   rT   rU   rV   r"   r   r   r   rW   r    rZ   r[   r   r!   r   funcs                    r/   r   r     s    4 <<$$&s 3-83 0 ^
 	
 1Ne

7 599))+STTuyy--/#$!%r0   )NFFFF)typingr   r   r   r   r   r=   r   	optimizerr
   r   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r?   rd   r   r   r   rF   r0   r/   <module>r      s   6 5     " X
RY Rl4
	 
 		 		 		 5, bG9LG9<G9 6lG9 6l	G9
 fG9 
G9 G9 G9 	G9 G9 G9 G9 G9 G9TmLm<m 6lm 6l	m
 fm 
m m m 	m m m m m m`  1FG # <L<<< 6l< 6l	<
 f< d^< < < < < 
< <  !<" 	#<$ %< H<r0   