
    Ǆg@                        d dl mZmZmZmZmZmZ d dlZd dlmZ ddl	m
Z
mZmZmZmZmZmZmZmZmZmZmZ ddgZ G d de      Zd	d
e de
 de de d	z   e_        dee   dee   dee   dee   dee   dedededededededefdZdee   dee   dee   dee   dee   dedededededededefdZ ee      	 	 	 	 ddee   dee   dee   dee   dee   dedee   dededededededefd       Zy)     )AnycastDictListOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype_maximize_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdadeltaadadeltac                        e Zd Z	 	 	 	 	 ddddddedeeef   dedededee   d	ed
edef fdZ	 fdZ
deeef   dee   dee   dee   dee   dee   fdZedd       Z xZS )r   F)
capturablemaximizedifferentiableparamslrrhoepsweight_decayforeachr   r   r   c          
      P   t        |t              r|j                         dk7  rt        d      d|k  st        d|       d|cxk  rdk  sn t        d|       d|k  st        d|       d|k  st        d|       t	        ||||||||		      }
t
        |   ||
       y )
Nr
   zTensor lr must be 1-elementg        zInvalid learning rate:       ?zInvalid rho value: zInvalid epsilon value: zInvalid weight_decay value: )r   r   r    r!   r   r   r"   r   )
isinstancer	   numel
ValueErrordictsuper__init__)selfr   r   r   r    r!   r"   r   r   r   defaults	__class__s              \/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/optim/adadelta.pyr*   zAdadelta.__init__   s     b&!bhhjAo:;;by6rd;<<c S 23%899cz6se<==l";L>JKK%!)	
 	*    c                 0   t         |   |       | j                  D ]  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d         rGt        |d         }|d   r*t        j                  |t               |j                  	      nt        j                  |t               
      |d<     y )Nr"   r   Fr   r   r   r   stepdtypedevicer3   )r)   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r4   )r+   r9   grouppp_statestep_valr-   s         r.   r6   zAdadelta.__setstate__@   s    U#&& 	EY-Z/-u5\518_ 
**..B/w<1$U__WV_-M$WV_5H
 !. $,=,? #\\(:K:MN FO	
	r/   r@   params_with_gradgradssquare_avgs
acc_deltasstate_stepsc                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt                     |	d	<   t        j                  |t        j                  
      |	d<   t        j                  |t        j                  
      |	d<   |j                  |	d          |j                  |	d          |j                  |	d	          r |S )NFr   z*Adadelta does not support sparse gradientsr   r    r2   r5   r1   )memory_format
square_avg	acc_delta)gradr<   
is_complexappend	is_sparseRuntimeErrorr9   r;   zerosr   r4   
zeros_likepreserve_format)
r+   r@   rD   rE   rF   rG   rH   has_complexrA   r9   s
             r.   _init_groupzAdadelta._init_groupS   sS    x 	.Avv~5++A..K##A&vv"#OPPLL JJqME 5zQ \* KK*;*=ahhOR/@/BC f ',&6&6U%:%:'l# &+%5%5U%:%:&k" u\23eK01uV}-9	.< r/   c                 x   | j                          d}|$t        j                         5   |       }ddd       | j                  D ]f  }g }g }g }g }g }|d   |d   |d   |d   |d   |d   |d   |d	   f\  }	}
}}}}}}| j	                  ||||||      }t        ||||||	|
|||||||
       h |S # 1 sw Y   xY w)zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r    r!   r"   r   r   r   )	r   r   r    r!   r"   r   r   r   rV   ) _cuda_graph_capture_health_checkr<   enable_gradr7   rW   r   )r+   closurelossr@   rD   rE   rF   rG   rH   r   r   r    r!   r"   r   r   r   rV   s                     r.   r1   zAdadelta.step~   s3    	--/""$ !y! && -	E-/"$E(*K')J(*K deen%i j!&'l#		 **'ZK  )!-%'=-	^ e! !s   B00B9)r$   g?gư>r   NN)__name__
__module____qualname__r   r   r>   r	   r   boolr*   r6   r   strr   r   rW   r   r1   __classcell__)r-   s   @r.   r   r      s    $'"&"+ !$"+"+ %- "+ 	"+
 "+ "+ $"+ "+ "+ "+H&)CH~) v,) F|	)
 &\) L) &\)V "= "=r/   a  Implements Adadelta algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},
                \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},
                \: \lambda \text{ (weight decay)}                                                \\
            &\textbf{initialize} :  v_0  \leftarrow 0 \: \text{ (square avg)},
                \: u_0 \leftarrow 0 \: \text{ (accumulate variables)}                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm} v_t      \leftarrow v_{t-1} \rho + g^2_t (1 - \rho)                    \\
            &\hspace{5mm}\Delta x_t    \leftarrow   \frac{\sqrt{u_{t-1} +
                \epsilon }}{ \sqrt{v_t + \epsilon}  }g_t \hspace{21mm}                           \\
            &\hspace{5mm} u_t  \leftarrow   u_{t-1}  \rho +
                 \Delta x^2_t  (1 - \rho)                                                        \\
            &\hspace{5mm}\theta_t      \leftarrow   \theta_{t-1} - \gamma  \Delta x_t            \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.
    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        rho (float, optional): coefficient used for computing a running average
            of squared gradients (default: 0.9). A higher value of `rho` will
            result in a slower average, which can be helpful for preventing
            oscillations in the learning process.
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-6).
        lr (float, Tensor, optional): coefficient that scale delta before it is applied
            to the parameters (default: 1.0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _ADADELTA\: An Adaptive Learning Rate Method:
        https://arxiv.org/abs/1212.5701

    r   rE   rF   rG   rH   r   r   r    r!   r   r   r   rV   c                   t         j                  j                         s7|r5t        d      t	        fdt        | |      D              sJ d d       t        | ||||      D ]{  \  }}}}}|dz  }|	s|n| }|dk7  r|j                  ||      }t        j                  |      r?t        j                  |      }t        j                  |      }t        j                  |      }|j                  |      j                  ||d|z
  	       |j                  |      j                         }|j                  |      j                         }|
r|j                         }|j                  |      j                  |       |j                  |      j                  ||d|z
  	       t        j                  |      rt        j                  |      }|j                  ||        ~ y )
NFsupports_xlac              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wr]   r4   type.0rA   r1   capturable_supported_devicess      r.   	<genexpr>z*_single_tensor_adadelta.<locals>.<genexpr>
  Q      
 4 HHMMT[[--- >!==>
   AAIIf capturable=True, params and state_steps must be on supported devices: .r
   r   alphavalue)r<   _utilsis_compilingr   allzipaddrO   view_as_realmul_addcmul_sqrt_clonediv_view_as_complexadd_)r   rE   rF   rG   rH   r   r   r    r!   r   r   r   rV   paramrN   rL   rM   r1   stddeltarl   s                       @r.   _single_tensor_adadeltar      s   " <<$$&:'H(
$  
 v{3
 
 	w WWsVttuv		w 
 58{J5 %0tZD 		#t$188E86DE"++J7J**95I%%d+D%%dDC%@nnS!'')c"((*KKME

3T"s$$UES$AE"))%0E

5
$1%r/   c                n   |
rJ d       t         j                  j                         s7|r5t        d      t	        fdt        | |      D              sJ d d       t        |       dk(  ry t        j                  | ||||g      }|j                         D ]  \  \  }}}}}}t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }|rt        ||||       t         j                  j                         s=|d   j                  r.t        j                  |t        j                   dd	
      d       nt        j                  |d       |	rt        j"                  |      }|dk7  r3|	rt        j                  |||       nt        j$                  |||      }t        j&                  ||       t        j(                  |||d|z
         t        j$                  ||      }t        j*                  |       t        j$                  ||      }t        j*                  |       t        j,                  ||       t        j&                  ||       t        j&                  ||       t        j(                  |||d|z
         |rIt/        |t         j                        r/t        j&                  ||        t        j                  ||       t        j                  |||         y )Nz#_foreach ops don't support autogradFre   c              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wr]   rh   rj   s      r.   rm   z)_multi_tensor_adadelta.<locals>.<genexpr>B  rn   ro   rp   rq   r   r$   cpu)r4   rr   r
   rt   )r<   rv   rw   r   rx   ry   r;   r   "_group_tensors_by_device_and_dtypevaluesr   r   r	   r   is_cpu_foreach_add_r?   _foreach_neg_foreach_add_foreach_mul__foreach_addcmul__foreach_sqrt__foreach_div_r%   )r   rE   rF   rG   rH   r   r   r    r!   r   r   r   rV   grouped_tensorsdevice_params_device_grads_device_square_avgs_device_acc_deltas_device_state_steps__device_paramsdevice_gradsdevice_square_avgsdevice_acc_deltasdevice_state_stepsr   deltasrl   s                              @r.   _multi_tensor_adadeltar   +  s     DDD <<$$&:'H(
$  
 v{3
 
 	w WWsVttuv		w 
 6{aBB	Z=O ""$>B 		 	T&\>:DL-8!$v,0CD f/AB!$v,0CD|-?AR ||((*/A!/D/K/K"ELLU$C3  2A6 --l;L1##L-|T$11 -|  	.4l!c'	
   !3S9S!##$5s;V$FC(FL1-s3 166SQ *R6,v6vbSA}>Br/   )single_tensor_fnr"   c	                z   t         j                  j                         st        d |D              st	        d      |t        | |d      \  }}|r)t         j                  j                         rt	        d      |r%t         j                  j                         st        }nt        } || |||||	|
||||||       y)zvFunctional API that performs Adadelta algorithm computation.

    See :class:`~torch.optim.Adadelta` for details.
    c              3   P   K   | ]  }t        |t        j                           y wr]   )r%   r<   r	   )rk   ts     r.   rm   zadadelta.<locals>.<genexpr>  s       3()
1ell#3s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)r   r   r    r!   r   r   r   rV   )
r<   rv   rw   rx   rR   r   jitis_scriptingr   r   )r   rE   rF   rG   rH   r   r"   r   rV   r   r   r    r!   r   r   funcs                   r.   r   r     s    6 <<$$&s 3-83 0 ^
 	

 1Ne

7 599))+STTuyy--/%&!%r/   )FNFF)typingr   r   r   r   r   r   r<   r	   	optimizerr   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r>   ra   r   r   r   rJ   r/   r.   <module>r      s   : 9       z
"ay aJ8	 
 		 		 		 !91 	 l3%L3%<3% f3% V	3%
 f3% 	3% 
3% 
3% 3% 3% 3% 3% 3%laBLaB<aB faB V	aB
 faB 	aB 
aB 
aB aB aB aB aB aBH  1HI " =L=<= f= V	=
 f= = d^= = = 	= 
= 
=  !=" #= J=r/   