
    Ǆg                     .   d dl mZ d dlmZ d dlmZmZ d dlZd dlm	c m
Z d dlmZ dZg dZd Zd	 Zd
 ZddZd ZddZ G d d      Z G d dee      Zddej2                  dedej2                  fdZddej2                  dedej2                  fdZy)    )update_wrapper)Number)AnyDictNis_tensor_likegox?)broadcast_alllogits_to_probsclamp_probsprobs_to_logitslazy_propertytril_matrix_to_vecvec_to_tril_matrixc                     t        d | D              st        d      t        d | D              st        t        j                               }| D ]?  }t        |t        j                        st        |j                  |j                        } n | D cg c]%  }t        |      r|nt        j                  |fi |' }}t        j                  | S t        j                  |  S c c}w )a  
    Given a list of values (possibly containing numbers), returns a list where each
    value is broadcasted based on the following rules:
      - `torch.*Tensor` instances are broadcasted as per :ref:`_broadcasting-semantics`.
      - numbers.Number instances (scalars) are upcast to tensors having
        the same size and type as the first tensor passed to `values`.  If all the
        values are scalars, then they are upcasted to scalar Tensors.

    Args:
        values (list of `numbers.Number`, `torch.*Tensor` or objects implementing __torch_function__)

    Raises:
        ValueError: if any of the values is not a `numbers.Number` instance,
            a `torch.*Tensor` instance, or an instance implementing __torch_function__
    c              3   V   K   | ]!  }t        |      xs t        |t               # y wN)r   
isinstancer   .0vs     a/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/distributions/utils.py	<genexpr>z broadcast_all.<locals>.<genexpr>(   s$     Ja~a 9Jq&$99Js   ')zqInput arguments must all be instances of numbers.Number, torch.Tensor or objects implementing __torch_function__.c              3   2   K   | ]  }t        |        y wr   r   r   s     r   r   z broadcast_all.<locals>.<genexpr>-   s     1Q~a 1s   )dtyper   device)all
ValueErrordicttorchget_default_dtyper   Tensorr   r   r   tensorbroadcast_tensors)valuesoptionsvaluer   
new_valuess        r   r	   r	      s      J6JJG
 	
 1&11"&U-D-D-F"G 	E%.U[[F	
 MS
GH"AQ(B'(BB

 
 &&
33""F++	
s   *C&c                    t         j                  j                         rBt        j                  t        j                  | ||      t        j
                  | ||            S t        j                  | ||      j                         S )Nr   )r    _C_get_tracing_statenormalzerosonesemptynormal_)shaper   r   s      r   _standard_normalr2   :   sa    xx""$||KKU6:JJuE&9
 	
 ;;uE&9AACC    c                 v    |dk(  r| S | j                   d|  dz   }| j                  |      j                  d      S )z
    Sum out ``dim`` many rightmost dimensions of a given tensor.

    Args:
        value (Tensor): A tensor of ``.dim()`` at least ``dim``.
        dim (int): The number of rightmost dims to sum out.
    r   N)r5   )r1   reshapesum)r'   dimrequired_shapes      r   _sum_rightmostr:   D   sA     ax[[3$'%/N==(,,R00r3   c                 ^    |rt        j                  |       S t        j                  | d      S )a  
    Converts a tensor of logits into probabilities. Note that for the
    binary case, each value denotes log odds, whereas for the
    multi-dimensional case, the values along the last dimension denote
    the log probabilities (possibly unnormalized) of the events.
    r5   )r8   )r    sigmoidFsoftmax)logits	is_binarys     r   r
   r
   R   s'     }}V$$99V$$r3   c                     t        j                  | j                        j                  }| j	                  |d|z
        S )a  Clamps the probabilities to be in the open interval `(0, 1)`.

    The probabilities would be clamped between `eps` and `1 - eps`,
    and `eps` would be the smallest representable positive number for the input data type.

    Args:
        probs (Tensor): A tensor of probabilities.

    Returns:
        Tensor: The clamped probabilities.

    Examples:
        >>> probs = torch.tensor([0.0, 0.5, 1.0])
        >>> clamp_probs(probs)
        tensor([1.1921e-07, 5.0000e-01, 1.0000e+00])

        >>> probs = torch.tensor([0.0, 0.5, 1.0], dtype=torch.float64)
        >>> clamp_probs(probs)
        tensor([2.2204e-16, 5.0000e-01, 1.0000e+00], dtype=torch.float64)

       )minmax)r    finfor   epsclamp)probsrF   s     r   r   r   ^   s3    , ++ekk
"
&
&C;;3AG;,,r3   c                     t        |       }|r,t        j                  |      t        j                  |       z
  S t        j                  |      S )a$  
    Converts a tensor of probabilities into logits. For the binary case,
    this denotes the probability of occurrence of the event indexed by `1`.
    For the multi-dimensional case, the values along the last dimension
    denote the probabilities of occurrence of each of the events.
    )r   r    loglog1p)rH   r@   
ps_clampeds      r   r   r   x   s?     U#Jyy$u{{J;'???99Z  r3   c                       e Zd ZdZd ZddZy)r   z
    Used as a decorator for lazy loading of class attributes. This uses a
    non-data descriptor that calls the wrapped method to compute the property on
    first call; thereafter replacing the wrapped method into an instance
    attribute.
    c                 *    || _         t        | |       y r   )wrappedr   selfrO   s     r   __init__zlazy_property.__init__   s    tW%r3   Nc                     |t        | j                        S t        j                         5  | j                  |      }d d d        t	        || j                  j
                         |S # 1 sw Y   ,xY wr   )_lazy_property_and_propertyrO   r    enable_gradsetattr__name__)rQ   instanceobj_typer'   s       r   __get__zlazy_property.__get__   sa    .t||<<  	+LL*E	+$,,//7	+ 	+s   A))A2r   )rW   
__module____qualname____doc__rR   rZ    r3   r   r   r      s    &r3   r   c                       e Zd ZdZd Zy)rT   zWe want lazy properties to look like multiple things.

    * property when Sphinx autodoc looks
    * lazy_property when Distribution validate_args looks
    c                 0    t         j                  | |       y r   )propertyrR   rP   s     r   rR   z$_lazy_property_and_property.__init__   s    $(r3   N)rW   r[   r\   r]   rR   r^   r3   r   rT   rT      s    )r3   rT   matdiagreturnc           	      .   | j                   d   }t        j                  j                         s$|| k  s||k\  rt	        d| d|  d|dz
   d      t        j
                  || j                        }||j                  dd      |dz   z   k  }| d|f   }|S )	z
    Convert a `D x D` matrix or a batch of matrices into a (batched) vector
    which comprises of lower triangular elements from the matrix in row order.
    r5   zdiag (z) provided is outside [z, rB   z].r   .)r1   r    r*   r+   r   aranger   view)rb   rc   nrg   	tril_maskvecs         r   r   r      s    
 			"A88&&(daRi4196$'>rd"QqSELMM\\!CJJ/FR+tax88I
c9n
CJr3   rk   c                    dd|z  z    dd|z  z   dz  d| j                   d   z  z   dt        |      z  |dz   z  z   dz  z   dz  }t        j                  | j                        j
                  }t        j                  j                         s0t        |      |z
  |kD  rt        d| j                   d    dd	z         t        |t        j                        rt        |j                               n
t        |      }| j                  | j                   d
d t        j                  ||f      z         }t        j                  || j                         }||j#                  dd      |dz   z   k  }| |d|f<   |S )z
    Convert a vector or a batch of vectors into a batched `D x D`
    lower triangular matrix containing elements from the vector in row order.
    rB         r5      g      ?zThe size of last dimension is z which cannot be expressed as z3the lower triangular part of a square D x D matrix.Nrf   .)r1   absr    rE   r   rF   r*   r+   roundr   r   r"   item	new_zerosSizerg   r   rh   )rk   rc   ri   rF   rb   rg   rj   s          r   r   r      sV    a$h,DLQSYYr]!22QT]dQh5OOTW
W	X		
A ++cii
 
$
$C88&&(eAhlS.@,SYYr]O;YZCD
 	
 &a6affhE!HA
--		#2QF);;
<C\\!CJJ/FR+tax88ICYJr3   )F)r   )	functoolsr   numbersr   typingr   r   r    torch.nn.functionalnn
functionalr=   torch.overridesr   euler_constant__all__r	   r2   r:   r
   r   r   r   ra   rT   r"   intr   r   r^   r3   r   <module>r      s    $      * (,DD1	%-4
! *)- )ELL  ELL ELL  ELL r3   