# mypy: allow-untyped-defs
"""
This file includes private common utilities for FSDP.
"""
import logging
import traceback
import warnings
import weakref
from enum import auto, Enum
from functools import partial
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Generator,
    Iterable,
    List,
    no_type_check,
    Optional,
    Set,
    Tuple,
    Type,
    TYPE_CHECKING,
)

import torch
import torch.distributed as dist
import torch.distributed.fsdp._flat_param as flat_param_file
import torch.nn as nn
from torch.distributed._composable_state import _get_module_state, _State
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    _CHECKPOINT_PREFIX,
)
from torch.distributed.utils import _apply_to_tensors
from torch.utils._mode_utils import no_dispatch

from .api import (
    FullOptimStateDictConfig,
    FullStateDictConfig,
    OptimStateDictConfig,
    ShardingStrategy,
    StateDictConfig,
    StateDictType,
)


if TYPE_CHECKING:
    from torch.distributed.device_mesh import DeviceMesh
    from torch.distributed.fsdp._fsdp_extensions import FSDPExtensions

    from ._flat_param import FlatParamHandle

FSDP_WRAPPED_MODULE = "_fsdp_wrapped_module"
FSDP_PREFIX = FSDP_WRAPPED_MODULE + "."
FSDP_FLATTENED = "_fsdp_flattened"

# Save a global mapping from module to its input tensor dtype to be populated
# during the forward pre-hook and consumed in the forward post-hook when
# overriding a module's mixed precision
# NOTE: We currently take the last input tensor's dtype in the case of multiple
# floating-point input tensors, which may be incorrect. However, since there is
# not a 1:1 correspondence between input and output tensors, we must use *some*
# heuristic like this to predict the desired output dtype.
_MODULE_TO_INP_DTYPE: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()


class _FSDPDeviceHandle:
    """
    This is a simple abstraction for FSDP computing devices,
    which enables custom backends that implement CUDA-like
    semantics to be integrated with FSDP.
    """

    def __init__(self, device: torch.device, backend: Any = None):
        if backend is None:
            try:
                self.__backend = getattr(torch, device.type)
                self.__device = device
            except AttributeError as exc:
                raise AttributeError(
                    f"Device '{device}' does not have a corresponding backend registered as 'torch.{device.type}'."
                ) from exc
        else:
            self.__backend = backend

    @classmethod
    def from_device(cls, device: torch.device) -> "_FSDPDeviceHandle":
        """
        Return a device handle corresponding to the device, and through this handle,
        operations with the same semantics as CUDA can be performed on the device.
        Just return torch.cuda if the device is cuda to make attribute-access faster.
        Custom backend must first register a module with the same name with {device.type} on torch.
        """
        if device.type == "cuda":
            return cast(_FSDPDeviceHandle, torch.cuda)
        elif device.type == "mtia":
            return cast(_FSDPDeviceHandle, torch.mtia)
        return cls(device)

    def __getattr__(self, __name: str) -> Any:
        try:
            return getattr(self.__backend, __name)
        except AttributeError as exc:
            raise AttributeError(
                f"Custom backend '{self.__device.type}' not implement 'torch.{self.__device.type}.{__name}'"
            ) from exc


class _UninitializedDeviceHandle(_FSDPDeviceHandle):
    def __init__(self) -> None:
        pass

    def __getattribute__(self, __name: str) -> Any:
        raise RuntimeError("Trying to use an uninitialized device handle.")


class _FSDPState(_State):
    def __init__(self) -> None:
        # TODO: Move all the attributes to this class to enable typing for
        # FSDP/fully_shard.
        self._ignored_modules: Set[nn.Module] = set()
        self._ignored_params: Set[nn.Parameter] = set()
        # Buffer names are cleaned (without wrapper prefixes)
        self._ignored_buffer_names: Set[str] = set()
        self.process_group: Optional[dist.ProcessGroup] = None
        self.rank: int = -1
        self.world_size: int = -1
        self._device_mesh: Optional[DeviceMesh] = None
        self.sharding_strategy = ShardingStrategy.FULL_SHARD
        self._use_orig_params: bool = False
        self.training_state = TrainingState.IDLE
        self._unshard_params_ctx: Dict[nn.Module, Generator] = {}
        self._state_dict_type: StateDictType = StateDictType.FULL_STATE_DICT
        self._state_dict_config: StateDictConfig = FullStateDictConfig()
        self._optim_state_dict_config: OptimStateDictConfig = FullOptimStateDictConfig()
        self._is_root: Optional[bool] = None
        self._handle: Optional[flat_param_file.FlatParamHandle] = None
        self._fully_sharded_module_to_handle: Dict[
            nn.Module, Optional[flat_param_file.FlatParamHandle]
        ] = {}
        self.compute_device: Optional[torch.device] = None
        self._gradient_predivide_factor: int = 0
        self._gradient_postdivide_factor: int = 0
        self._comm_hook: Optional[Callable] = None
        self._comm_hook_state: Optional[Any] = None
        self._unshard_event: Optional[torch.Event] = None
        # Abstract device handle for fsdp compute device. For now,
        # the compute device must implement cuda semantics used by fsdp
        self._device_handle: _FSDPDeviceHandle = _UninitializedDeviceHandle()
        # All following attributes should only be used for root states:
        # Save these static lists to avoid the repeated tree traversals
        self._all_fsdp_states: List[_FSDPState] = []
        self._all_handles: List[flat_param_file.FlatParamHandle] = []
        self._fsdp_extension: Optional[FSDPExtensions] = None


def _get_module_fsdp_state(module: nn.Module) -> Optional[_FSDPState]:
    state = _get_module_state(module)
    if state is None or not isinstance(state, _FSDPState):
        return None
    return state


def _get_module_fsdp_state_if_fully_sharded_module(
    module: nn.Module,
) -> Optional[_FSDPState]:
    state = _get_module_fsdp_state(module)
    if state is None:
        return None
    if state == module:  # FullyShardedDataParallel module case.
        return state
    if module in state._fully_sharded_module_to_handle:  # fully_shard case.
        return state
    return None


class TrainingState(Enum):
    """
    An enum that indicates the state of a ``FullyShardedDataParallel` instance.
    """

    IDLE = auto()
    FORWARD_BACKWARD = auto()
    SUMMON_FULL_PARAMS = auto()


class HandleTrainingState(Enum):
    """
    An enum that indicates the state of a ``FlatParamHandle`.
    """

    IDLE = auto()
    FORWARD = auto()
    BACKWARD_PRE = auto()
    BACKWARD_POST = auto()
    SUMMON_FULL_PARAMS = auto()


def _is_composable(state: _FSDPState):
    # TODO: This is a temporary hack for differentiate between code paths.
    return not isinstance(state, nn.Module)


@no_type_check
def _module_handle(state: _FSDPState, module: nn.Module) -> Optional["FlatParamHandle"]:
    """
    Returns the ``FlatParamHandle`` s corresponding to ``module``. This is
    the handle that contains some parameter in ``module``.
    """
    if _is_composable(state):
        # A valid FSDP state may have no managed parameters and hence no
        # handles, meaning no entry in `_fully_sharded_module_to_handles`
        if state._handle is None:
            return None
        assert (
            module in state._fully_sharded_module_to_handle
        ), f"Expects a fully sharded module but got {module} on rank {state.rank}"
        return state._fully_sharded_module_to_handle[module]
    else:
        # NOTE: This assumes `module` is a `FullyShardedDataParallel` instance.
        return module._handle


@no_type_check
def _has_fsdp_params(state: _FSDPState, module: nn.Module) -> bool:
    """Returns if ``module`` has parameters managed by FSDP."""
    return _module_handle(state, module) is not None


def _get_sharding_strategy(handle):
    """
    Returns the sharding strategy of the handle.
    """
    return handle._sharding_strategy if handle else None


def clean_tensor_name(tensor_name: str) -> str:
    """
    Cleans the parameter or buffer name by removing any module wrapper
    prefixes.
    """
    tensor_name = tensor_name.replace(FSDP_PREFIX, "")
    # TODO: Explicitly replacing the checkpoint wrapper prefix is not ideal as
    # it couples `CheckpointWrapper` and FSDP and also does not scale for more
    # module wrappers.
    tensor_name = tensor_name.replace(_CHECKPOINT_PREFIX, "")
    return tensor_name


def _set_fsdp_flattened(tensor: torch.Tensor) -> None:
    """
    Sets an attribute on ``tensor`` to mark it as flattened by FSDP. This is to
    avoid re-flattening it during nested construction.
    """
    setattr(tensor, FSDP_FLATTENED, True)


def _is_fsdp_flattened(tensor: torch.Tensor) -> bool:
    """Returns if ``tensor`` has been marked as flattened by FSDP."""
    return getattr(tensor, FSDP_FLATTENED, False)


def _named_parameters_with_duplicates(
    module: nn.Module, **kwargs: Any
) -> List[Tuple[str, nn.Parameter]]:
    """
    This API is required as some modules overwrite `named_parameters()` but do not support
    `remove_duplicate`.
    """
    assert (
        "remove_duplicate" not in kwargs
    ), "_named_parameters_with_duplicates cannot be used with `remove_duplicate` argument."
    kwargs["remove_duplicate"] = False
    try:
        ret = list(module.named_parameters(**kwargs))
    except AssertionError as e:
        kwargs.pop("remove_duplicate")
        ret = list(module.named_parameters(**kwargs))
    return ret


def _get_param_to_fqns(
    model: torch.nn.Module,
    dedup_shared_params: bool = True,
) -> Dict[nn.Parameter, List[str]]:
    """
    Constructs a mapping from parameter to a list of its \"canonical\" FQNs. Here,
    we use canonical to mean the fully-qualified name assigned to the parameter
    based on its position in the original nn.Module hierarchy before any wrapper
    or parallelism has been applied to it. This is in contrast to FQNs that may be
    generated after parallelisms or wrappers have been applied to the model.

    Each normal parameter maps to a singleton list containing its FQN, while each
    ``FlatParameter`` maps to a list of its original parameter FQNs, which may
    have length greater than one.  All FQNs are prefixed starting from ``model``.

    In the case where FSDP was applied with ``use_orig_params=True``, there should be no
    ``FlatParameter`` s registered to the model's modules and this mapping will only
    contain mappings from ``nn.Parameter`` s to singleton FQN lists.

    It is only in the case where FSDP was applied with ``use_orig_params=False`` where
    a ``FlatParameter`` will be registered in place of the original parameters and there
    will be mappings from each ``FlatParameter`` to lists of FQNs corresponding to the
    original parameters.

    Args:
        model (torch.nn.Module): Root module (which may or may not be a
            :class:`FullyShardedDataParallel` instance).
        dedup_shared_params (bool): For shared parameters, if ``True``, only
            includes the FQNs corresponding to the first encounter of the
            shared parameter in the module traversal; if ``False``, then
            includes the FQNs across all encounters. (Default: ``True``)
    """

    def module_fn(module, prefix, tree_level, param_to_fqns):
        for param_name, param in _named_parameters_with_duplicates(
            module, recurse=False
        ):
            local_fqns = (
                param._fqns
                if isinstance(param, flat_param_file.FlatParameter)
                else [param_name]
            )  # prefixed from `module`
            global_fqns = [
                clean_tensor_name(prefix + name) for name in local_fqns
            ]  # prefixed from the top level `model` (i.e. including `prefix`)
            is_shared_param = param in param_to_fqns
            if not is_shared_param:
                param_to_fqns[param] = global_fqns
            else:
                if isinstance(param, flat_param_file.FlatParameter):
                    # DMP overwrites `named_parameters` and skip (advance to
                    # the next child module) the wrapped_module (e.g.,
                    # _dmp_wrapped_module and _fsdp_wrapped_module). When a user
                    # calls `named_child` to traverse the module recursively and
                    # calls `named_parameters` with `recurse=False`, parameters
                    # will be traversed more than once.
                    # This hack is specified designed for DMP + FSDP. We
                    # overwrite the flat_parameters traversal result to only obtain
                    # the last one, which happens to be the correct one.
                    #
                    # TODO: Remove this hack once DMP + FSDP is not supported.
                    warnings.warn(
                        "FlatParameter is being traversed more than once. "
                        "This case should only happen when using "
                        "DistributedModelParallel with FullyShardedDataParallel."
                    )
                    param_to_fqns[param] = global_fqns
                elif not dedup_shared_params:
                    param_to_fqns[param].extend(global_fqns)

    def return_fn(param_to_fqns):
        return param_to_fqns

    param_to_unflat_param_names: Dict[torch.nn.Parameter, List[str]] = {}
    return _apply_to_modules(
        model,
        module_fn,
        return_fn,
        [key for key, _ in _named_parameters_with_duplicates(model)],
        param_to_unflat_param_names,
    )


@no_type_check
def _log_post_backward_hook(
    state: _FSDPState, handle: "FlatParamHandle", logger: logging.Logger
) -> None:
    # Under TORCH_DISTRIBUTED_DEBUG=INFO, log the module names this hook fires for.
    # Below logging of module names this post-bwd hook fires for can help debug certain
    # cases where hooks don't fire, such as under certain activation checkpoint configs.
    if state._use_orig_params and handle._debug_level == dist.DebugLevel.INFO:
        param_fqns = _get_handle_fqns_from_root(state, handle)
        logger.warning("FSDP firing post-backward hooks for parameters %s", param_fqns)


@no_type_check
def _get_handle_fqns_from_root(
    state: _FSDPState, handle: "FlatParamHandle"
) -> Optional[List[str]]:
    if handle is None:
        return None
    param_to_fqn = state._exec_order_data.param_to_fqn
    handle_params = handle.flat_param._params  # only populated for use_orig_params
    param_fqns = [
        fqn for fqn_list in [param_to_fqn[p] for p in handle_params] for fqn in fqn_list
    ]
    return param_fqns


def _apply_to_modules(
    root_module: torch.nn.Module,
    module_fn: Callable,
    return_fn: Callable,
    filter_fqns: Optional[List[str]] = None,
    *args,
    **kwargs,
):
    """
    Performs a pre-order traversal of the modules in the hierarchy rooted at
    ``root_module``, applying ``module_fn`` at each module and finally
    returning a value using ``return_fn``. The traversal constructs the full
    module prefix name (e.g. "module.submodule." just like in model state dict)
    and makes that available to ``module_fn``.

    ``filter_fqns`` is used because some module may have its own prefix similar
    to ``FullyShardedDataParallel`` and the ``named_parameters()`` is overwritten
    to remove the prefix.
    """

    def f(module: torch.nn.Module, prefix: str, tree_level: int, *args, **kwargs):
        # Call the module function before recursing over children (pre-order)
        module_fn(module, prefix, tree_level, *args, **kwargs)
        for submodule_name, submodule in module.named_children():
            if submodule is None:
                continue
            new_prefix = prefix + submodule_name + "."
            new_tree_level = tree_level + 1
            if filter_fqns is not None:
                for fqn in filter_fqns:
                    if fqn.startswith(new_prefix):
                        break
                else:
                    # DMP's named_parameter() will mess up the traversal with
                    # ``named_children`` + `named_parameter(recurse=False)``.
                    # This hack is a must to make the traversal work.
                    # TODO: Remove this hack once DMP + FSDP is not supported.
                    # It turns out that recursive wrapping may trigger this as
                    # well.
                    if (
                        submodule_name == "_fsdp_wrapped_module"
                        or submodule_name == "_dmp_wrapped_module"
                    ):
                        new_prefix = prefix
                    elif submodule_name == "module":
                        new_prefix = prefix
            f(submodule, new_prefix, new_tree_level, *args, **kwargs)

    f(root_module, "", 0, *args, **kwargs)
    return return_fn(*args, **kwargs)


@no_type_check
def _assert_in_training_states(
    state: _FSDPState,
    training_states: List[TrainingState],
) -> None:
    """Asserts that FSDP is in the states ``_training_states``."""
    # Raise a `ValueError` instead of using `assert` to ensure that these
    # logical assertions run even if `assert`s are disabled
    if state.training_state not in training_states:
        msg = (
            f"expected to be in states {training_states} but current state is "
            f"{state.training_state}"
        )
        # Print the error on rank 0 in case this is called in the backward pass
        if state.rank == 0:
            if isinstance(state, nn.Module):
                print(f"Asserting FSDP instance is: {state}")
            print(f"ERROR: {msg}")
            traceback.print_stack()
        raise ValueError(msg)


def _get_root_modules(modules: Set[nn.Module]) -> Set[nn.Module]:
    """
    Returns:
        Set[nn.Module]: The subset of ``modules`` that are root modules (i.e.
        parent-less) with respect to the modules in the set itself. In other
        words, these are the modules in ``modules`` that are not the child of
        any other module in ``modules``.
    """
    root_modules: Set[nn.Module] = set()
    module_to_submodules = {module: set(module.modules()) for module in modules}
    for candidate_module in modules:
        is_root_module = True
        for module, submodules in module_to_submodules.items():
            is_child_module = (
                candidate_module is not module and candidate_module in submodules
            )
            if is_child_module:
                is_root_module = False
                break
        if is_root_module:
            root_modules.add(candidate_module)
    return root_modules


def _override_module_mixed_precision(
    root: torch.nn.Module,
    module_classes_to_override: Iterable[Type[nn.Module]],
    wrap_override_dict: Dict[str, Any] = {"mixed_precision": None},  # noqa: B006
) -> Set[Type[nn.Module]]:
    module_classes_to_override = tuple(set(module_classes_to_override))
    # Return a set of the actually overridden module classes
    overridden_module_classes: Set[Type[nn.Module]] = set()
    for mod in root.modules():
        if isinstance(mod, module_classes_to_override):
            overridden_module_classes.add(type(mod))
            mod._wrap_overrides = wrap_override_dict  # type: ignore[assignment]
            # TODO: We need to run this mixed precision ignored module in fp32,
            # but ensure subsequent modules, that may possibly be running with
            # mixed precision, still receive the appropriate precision inputs
            # without user having to adjust mixed precision config too much.
            # As a result, we attach pre and post forward hooks to up / down
            # cast. We should revisit this design.

            def cast_fn(
                dtype: torch.dtype, module: nn.Module, x: torch.Tensor
            ) -> torch.Tensor:
                if not torch.is_floating_point(x) or x.dtype == dtype:
                    return x
                _MODULE_TO_INP_DTYPE[module] = x.dtype
                return x.to(dtype)

            def forward_pre_hook(module, args):
                return _apply_to_tensors(partial(cast_fn, torch.float32, module), args)

            def forward_post_hook(module, args, output):
                # NOTE: If the forward did not have any floating-point tensors,
                # then the dtype will not be set for this module, and we do not
                # upcast the dtype.
                if module in _MODULE_TO_INP_DTYPE:
                    old_dtype = _MODULE_TO_INP_DTYPE[module]
                    return _apply_to_tensors(
                        partial(cast_fn, old_dtype, module), output
                    )

            # We intentionally append both of these hooks so that they run after
            # all other hooks.
            mod.register_forward_pre_hook(forward_pre_hook, prepend=False)
            mod.register_forward_hook(forward_post_hook, prepend=False)
    return overridden_module_classes


def _no_dispatch_record_stream(tensor: torch.Tensor, stream: torch.Stream) -> None:
    # FIXME record_stream doesn't work with non-cuda/mtia tensors
    if tensor.device.type not in [
        "cuda",
        "mtia",
        torch._C._get_privateuse1_backend_name(),
    ]:
        return

    if torch.distributed._functional_collectives.is_torchdynamo_compiling():
        return
        # from @ezyang:
        # The no_dispatch was added in https://github.com/pytorch/pytorch/pull/88014 cc @fegin
        # Looking over the PR, it looks like this is because we don't actually support Stream arguments
        # in torch dispatch, so it just chokes.
        # If Dynamo is able to answer "are there any torch dispatch modes" active (it should answer False),
        # a better version of this would just be to check if there are any modes before disabling dispatch.
        # TODO(voz): Extend a dynamo util to answer the above, unify the codepaths here.
        tensor.record_stream(stream)
    else:
        with no_dispatch():
            tensor.record_stream(stream)
