
    Ǆg                         U d dl Z d dlZd dlmZmZ d dlmZ d dlZd dlm	Z	m
Z
  G d d      Zdeded	efd
Zd Zeaeed<   e j"                  d        Z G d d      Zy)    N)CallableOptional)
deprecated)KernelRegistrationHandlec                   0    e Zd ZdZdefdZdededefdZy)	FakeImplHolderz0A holder where one can register an fake impl to.qualnamec                 .    || _         d | _        d | _        y N)r
   kernellib)selfr
   s     `/home/mcse/projects/flask_80/flask-venv/lib/python3.12/site-packages/torch/_library/fake_impl.py__init__zFakeImplHolder.__init__   s    %(,48    funcsourcereturnc                      j                   0t        d j                   d j                   j                   d      t        j
                  j                   j                  d      rt        d j                   d      t        j
                  j                   j                  d      rt        d j                   d      t        ||       _          j                  C j                  j                  d      d	   }t        j                  j                  |d
       _        t         j                         } j                  j                   j                  |d        fd}t        |      S )z}Register an fake impl.

        Returns a RegistrationHandle that one can use to de-register this
        fake impl.
        z!register_fake(...): the operator z( already has an fake impl registered at .Metaz already has an DispatchKey::Meta implementation via a pre-existing torch.library or TORCH_LIBRARY registration. Please either remove that registration or don't call register_fake.CompositeImplicitAutograda%   already has an implementation for this device type via a pre-existing registration to DispatchKey::CompositeImplicitAutograd.CompositeImplicitAutograd operators do not need an fake impl; instead, the operator will decompose into its constituents and those can have fake impls defined on them.z::r   FRAGMENTc                  n     j                   r! j                   j                          d  _         d  _        y r   )r   _destroyr   )r   s   r   deregister_fake_classz6FakeImplHolder.register.<locals>.deregister_fake_classA   s(    xx!!#DKr   )r   RuntimeErrorr
   r   torch_C%_dispatch_has_kernel_for_dispatch_keyr   r   splitlibraryLibraryconstruct_meta_kernelimplr   )r   r   r   nsmeta_kernelr   s   `     r   registerzFakeImplHolder.register   sL    ;;"3DMM? C:;;%%&a) 
 8899$--P3DMM? C! "  8899MM6
 3DMM? C7 8
 
 T6* 88$$T*1-B}},,R<DH+DMM4@dmm[&9	 ""788r   N)	__name__
__module____qualname____doc__strr   r   r   r)    r   r   r	   r	      s,    :9 9
49X 49s 497I 49r   r	   r
   fake_impl_holderr   c                      j                   J t        j                  j                   j                         fd       }|S )Nc                      j                   J j                   j                  fd}t        |      5   j                   | i |cd d d        S # 1 sw Y   y xY w)Nc                  (    t        d  d d      )Nz<Attempted to call get_ctx() for the meta implementation for z (implemented at z)You have presumably called get_ctx() because the operator has a data-dependent output shape; if so, there is no such meta implementation and this error is the correct behavior.)r   )r
   r   s   r   error_on_ctxz@construct_meta_kernel.<locals>.meta_kernel.<locals>.error_on_ctxR   s+    j 1& : r   )r   r   set_ctx_getter)argskwargsr4   r   r0   r
   s      @r   r(   z*construct_meta_kernel.<locals>.meta_kernelM   s`    &&222!((//	 L) 	<*#**D;F;	< 	< 	<s   AA)r   	functoolswrapsr   )r
   r0   r(   s   `` r   r%   r%   J   sE    ""...__%,,112< 3<" r   c                       y r   r/   r/   r   r   get_noner;   b   s    r   global_ctx_getterc              #   8   K   t         }	 | a d  |a y # |a w xY wwr   )r<   )
ctx_getterprevs     r   r5   r5   i   s'      D!& Ds    c                       e Zd ZdZd Z ede      ddddej                  fd	       Z	d
dddej                  fdZ
y)FakeImplCtxzO
    Context object for writing fake implementations for custom operators.
    c                 B    || _         |j                  | _        || _        y r   )
_fake_mode	shape_env
_shape_env_op)r   rC   rF   s      r   r   zFakeImplCtx.__init__y   s    $$..r   zM`create_unbacked_symint` is deprecated, please use `new_dynamic_size` instead)category   Nminmaxr   c                (    | j                  ||      S )NrI   )new_dynamic_size)r   rJ   rK   s      r   create_unbacked_symintz"FakeImplCtx.create_unbacked_symint~   s    
 $$#$66r   r   c                   | j                   | j                   j                  s3t        j                  j                  j                  | j                        t        |t        j                        st        |t        j                        rt        d| d| d      |dk  rt        d| d      | j                   j                         }t        j                  j                  j                  j                  |||       |S )a	  Constructs a new symint (symbolic int) representing a data-dependent value.

        This is useful for writing the fake implementation (which is necessary
        for torch.compile) for a CustomOp where an output Tensor has a size
        that depends on the data of the input Tensors.

        Args:
            min (int): A statically known inclusive lower bound for this symint. Default: 0
            max (Optional[int]): A statically known inclusive upper bound for this
                symint. Default: None

        .. warning:

            It is important that the ``min`` and ``max`` (if not None) values are set
            correctly, otherwise, there will be undefined behavior under
            torch.compile. The default value of ``min`` is 2 due to torch.compile
            specializing on 0/1 sizes.

            You must also verify that your implementation on concrete Tensors
            (e.g. CPU/CUDA) only returns Tensors where the size that corresponds
            to the symint also has respects these constraint.
            The easiest way to do this is to add an assertion in the CPU/CUDA/etc
            implementation that the size follows these bounds.

        Example::

            >>> # An operator with data-dependent output shape
            >>> lib = torch.library.Library("mymodule", "FRAGMENT")
            >>> lib.define("mymodule::custom_nonzero(Tensor x) -> Tensor")
            >>>
            >>> @torch.library.register_fake("mymodule::custom_nonzero")
            >>> def _(x):
            >>>     # Number of nonzero-elements is data-dependent.
            >>>     # Since we cannot peek at the data in an fake impl,
            >>>     # we use the ctx object to construct a new symint that
            >>>     # represents the data-dependent size.
            >>>     ctx = torch.library.get_ctx()
            >>>     nnz = ctx.new_dynamic_size()
            >>>     shape = [nnz, x.dim()]
            >>>     result = x.new_empty(shape, dtype=torch.int64)
            >>>     return result
            >>>
            >>> @torch.library.impl(lib, "custom_nonzero", "CPU")
            >>> def _(x):
            >>>     x_np = x.numpy()
            >>>     res = np.stack(np.nonzero(x_np), axis=1)
            >>>     return torch.tensor(res, device=x.device)

        zctx.new_dynamic_size(min=z, max=zZ): expected min and max to be statically known ints but got SymInt. This is not supported.r   zc, ...): expected min to be greater than or equal to 0: this API can only create non-negative sizes.rI   )rE   allow_dynamic_output_shape_opsr   _subclassesfake_tensorDynamicOutputShapeExceptionrF   
isinstanceSymInt
ValueErrorrN   fxexperimentalsymbolic_shapes_constrain_range_for_size)r   rJ   rK   results       r   rM   zFakeImplCtx.new_dynamic_size   s    f OO#??AA##//KKDHHUUc5<<(JsELL,I+C5se <) *  7+C5 1& '  779--GG 	H 	
 r   )r*   r+   r,   r-   r   r   FutureWarningr   rU   rN   rM   r/   r   r   rA   rA   t   sV    
 W -.4 7ELL 7	7 '(T Jell Jr   rA   )
contextlibr8   typingr   r   typing_extensionsr   r   torch._library.utilsr   r   r	   r.   r%   r;   r<   __annotations__contextmanagerr5   rA   r/   r   r   <module>rc      st      % (  ;<9 <9~C > h 0 ' 8 & ! ![ [r   