# Owner(s): ["oncall: distributed"]
import collections
import inspect
import logging
import math
import operator
from dataclasses import dataclass
from functools import partial
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Generator,
    List,
    Optional,
    Set,
    Tuple,
    Union,
)

import torch
import torch.fx as fx
from torch._dynamo.utils import counters
from torch.fx.passes.graph_transform_observer import GraphTransformObserver
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten

from .. import config
from ..fx_utils import get_fake_args_kwargs
from ..virtualized import V


aten = torch.ops.aten
logger: logging.Logger = logging.getLogger("comm_fusion")


def move_block_after(block: List[fx.Node], target_node: fx.Node) -> None:
    for node in block:
        target_node.append(node)
        target_node = node


def move_block_before(block: List[fx.Node], target_node: fx.Node) -> None:
    for node in block:
        target_node.prepend(node)
        target_node = node


def call_function(
    graph: fx.Graph,
    target: Union[str, Callable[..., Any]],
    args: Optional[Tuple[fx.node.Argument, ...]] = None,
    kwargs: Optional[Dict[str, fx.node.Argument]] = None,
) -> fx.Node:
    # We accept target as a str to avoid typing error as the type of
    # a node.target is Union[str, Callable[..., Any]].
    # This also allows us to avoid writing check for every call.
    if isinstance(target, str):
        raise RuntimeError(f"Call function should not get a str target {target=}")
    node = graph.call_function(target, args, kwargs)
    _, args, kwargs = get_fake_args_kwargs(node)
    with V.fake_mode:
        node.meta["val"] = target(*args, **kwargs)
        # node.meta["val"] may be a container. So we use tree_map here
        # to recursively extract the tensor metadata.
        node.meta["tensor_meta"] = tree_map(
            _extract_tensor_metadata, (node.meta["val"],)
        )[0]
    return node


@dataclass(unsafe_hash=True)
class CommBlock:
    shape: Union[torch.Size, List[torch.Size]]
    node_list: List[fx.Node]
    inputs: List[fx.Node]
    wait_nodes: List[fx.Node]
    comm_node: fx.Node
    outputs: Set[fx.Node]


def get_comm_block(comm_node: fx.Node) -> Optional[CommBlock]:
    """
    Given a collective node (e.g., allreduce), find out all the nodes belong to
    this communcation.

    Args:
        comm_node(fx.Node): The target communication/collective node.
    Returns:
        The CommBlock that encapsulates the related nodes (e.g., wait_node) of
        the given comm_node.
    """
    node_list = []
    wait_nodes = []
    inputs, _ = tree_flatten((comm_node.args, comm_node.kwargs))
    input_nodes = [inp for inp in inputs if isinstance(inp, fx.Node)]
    wait_prefixes = "wait_tensor"
    # If the users of the wait node are following items, we consinder them
    # to be a part of the output.
    intermediate_outputs = ("split", "reshape", "getitem", "detach", "alias")

    first_user = next(iter(comm_node.users))
    if (
        len(comm_node.users) == 1
        and first_user.target == torch.ops._c10d_functional.wait_tensor.default
    ):
        # Collective with only one output
        node_list = [comm_node, first_user]
        wait_nodes.append(first_user)
    elif len(comm_node.users) > 1 and first_user.target == operator.getitem:
        # Collective with only more than one output
        node_list.append(comm_node)
        for user in comm_node.users:
            if user.target != operator.getitem:
                return None
            if len(user.users) != 1:
                return None
            wait_node = next(iter(user.users))
            if wait_node.target != torch.ops._c10d_functional.wait_tensor.default:
                return None
            wait_nodes.append(wait_node)
            node_list.append(user)
        node_list.extend(wait_nodes)
    else:
        return None

    # Identify all the outputs of this collective block.
    outputs: Set[fx.Node] = set()
    nodes = collections.deque(wait_nodes)
    while nodes:
        node = nodes.popleft()
        for user in node.users:
            if isinstance(user, fx.Node) and user.name.startswith(intermediate_outputs):
                nodes.append(user)
                node_list.append(user)
            else:
                outputs.add(node)
                break

    tensor_meta = input_nodes[0].meta["tensor_meta"]
    shape: Union[torch.Size, List[torch.Size]]
    if isinstance(tensor_meta, TensorMetadata):
        shape = tensor_meta.shape
    elif isinstance(tensor_meta, (list, tuple)):
        shape = [tm.shape for tm in tensor_meta]
    else:
        logger.warning("Unexpected type of tensor_meta %s", type(tensor_meta))
        return None

    return CommBlock(
        shape=shape,
        node_list=node_list,
        wait_nodes=wait_nodes,
        comm_node=comm_node,
        inputs=input_nodes,
        outputs=outputs,
    )


def get_all_comm_blocks(
    graph: fx.Graph,
    comm_ops: Tuple[torch._ops.OpOverload, ...],
    comm_filter: Optional[Callable[..., bool]] = None,
) -> List[CommBlock]:
    if comm_filter is None:

        def always_true(comm_block: CommBlock) -> bool:
            return True

        comm_filter = always_true

    blocks = []
    for node in graph.nodes:
        if node.target not in comm_ops:
            continue
        comm_block = get_comm_block(node)
        if comm_block is not None and comm_filter(comm_block):
            blocks.append(comm_block)
    return blocks


def _fuse_allreduce_by_concat(
    graph: fx.Graph,
    last_input_node: fx.Node,
    all_input_nodes: List[fx.Node],
    last_comm_block: CommBlock,
) -> CommBlock:
    """Given a list of inputs in order, create a fused allreduce using concat."""
    # Flatten all the inputs to the all_reduce nodes.
    with graph.inserting_after(last_input_node):
        cat_inputs = []
        for input_node in all_input_nodes:
            assert isinstance(input_node.args[0], fx.Node)
            input_node = input_node.args[0]
            cat_inputs.append(
                call_function(graph, aten.flatten.using_ints, (input_node,))
            )

    # Concat all the flattened nodes.
    with graph.inserting_after(cat_inputs[0]):
        cat_node = call_function(graph, aten.cat, (cat_inputs,))

    # Insert the fused div node and remove the input div nodes.
    # This is an optimization and is not mandatory for fusion.
    divisors = [div.args[1] for div in all_input_nodes]
    assert all(divisor == divisors[0] for divisor in divisors)
    with graph.inserting_after(cat_node):
        div_node = call_function(graph, last_input_node.target, (cat_node, divisors[0]))

    # Create a new Comm/all_reduce node.
    last_comm_node = last_comm_block.comm_node
    last_wait_node = last_comm_block.wait_nodes[0]
    with graph.inserting_after(div_node):
        flatten_args, spec = tree_flatten((last_comm_node.args, last_comm_node.kwargs))
        flatten_args[0] = div_node
        args, kwargs = tree_unflatten(flatten_args, spec)
        fused_comm_node = call_function(graph, last_comm_node.target, args, kwargs)

    # Create a new Wait node.
    with graph.inserting_after(fused_comm_node):
        flatten_args, spec = tree_flatten((last_wait_node.args, last_wait_node.kwargs))
        flatten_args[0] = fused_comm_node
        args, kwargs = tree_unflatten(flatten_args, spec)
        fused_wait_node = call_function(graph, last_wait_node.target, args, kwargs)

    # Move the fused all_reduce and its args to right after the input node
    nodes_to_move = cat_inputs + [cat_node, div_node, fused_comm_node, fused_wait_node]
    move_block_after(nodes_to_move, last_input_node)

    return CommBlock(
        shape=cast(TensorMetadata, cat_node.meta.get("tensor_meta")).shape,
        node_list=[fused_comm_node, fused_wait_node],
        wait_nodes=[fused_wait_node],
        comm_node=fused_comm_node,
        inputs=[div_node],
        outputs={fused_wait_node},
    )


def _fuse_with_coalesced_op(
    graph: fx.Graph,
    last_input_node: fx.Node,
    all_input_nodes: List[fx.Node],
    last_comm_block: CommBlock,
) -> CommBlock:
    """Given a list of inputs in order, create a fused allreduce by coalesced."""
    last_comm_node = last_comm_block.comm_node
    last_wait_node = last_comm_block.wait_nodes[0]

    # Insert the fused div node and remove the input div nodes.
    # This is an optimization and is not mandatory for fusion.
    dividends = [div.args[0] for div in all_input_nodes]
    divisors = [div.args[1] for div in all_input_nodes]
    assert all(divisor == divisors[0] for divisor in divisors)
    with graph.inserting_before(last_input_node):
        last_input_node = call_function(
            graph, aten._foreach_div.Scalar, (dividends, divisors[0])
        )
    input_node = last_input_node

    # Create a new Comm/all_reduce_coalesced node.
    with graph.inserting_after(last_comm_node):
        flatten_args, spec = tree_flatten((last_comm_node.args, last_comm_node.kwargs))
        flatten_args[0] = input_node
        args, kwargs = tree_unflatten(flatten_args, spec)
        fused_comm_node = call_function(
            graph, torch.ops._c10d_functional.all_reduce_coalesced.default, args, kwargs
        )

    # Create a new wait node.
    getitem_nodes = []
    wait_nodes = []
    flatten_args, spec = tree_flatten((last_wait_node.args, last_wait_node.kwargs))
    for idx in range(len(all_input_nodes)):
        with graph.inserting_after(fused_comm_node):
            gi_node = call_function(graph, operator.getitem, (fused_comm_node, idx))
        getitem_nodes.append(gi_node)
        flatten_args[0] = gi_node
        args, kwargs = tree_unflatten(flatten_args, spec)
        with graph.inserting_after(gi_node):
            wait_nodes.append(call_function(graph, last_wait_node.target, args, kwargs))

    # Move the new all_reduce_coalesced and its args to right after the input node
    nodes_to_move = [fused_comm_node] + getitem_nodes + wait_nodes
    move_block_after(nodes_to_move, last_input_node)

    return CommBlock(
        shape=[
            tm.shape
            for tm in cast(
                List[TensorMetadata], fused_comm_node.meta.get("tensor_meta")
            )
        ],
        node_list=[fused_comm_node] + getitem_nodes + wait_nodes,
        wait_nodes=wait_nodes,
        comm_node=fused_comm_node,
        inputs=[input_node],
        outputs=set(wait_nodes),
    )


def _scatter_fused_allreduce_waits(
    graph: fx.Graph,
    fused_comm_block: CommBlock,
    orig_comm_blocks: List[CommBlock],
    node_indices: Dict[fx.Node, int],
    split_and_reshape: bool = True,
) -> None:
    """
    Scatters the result of the fused communication node to the original users.
    If the fused method is concat splitting the output and reshape will be inserted,
    before inserting getitem. Otherwise getitem will be used as the users of the
    wait node.
    """

    # Before we mass up the order, we need to get the index of the last wait node
    # in orig_comm_blocks. This index will be later used to determinee what users
    # nodes need to be move to maintain a correct topological sort order.
    last_wait_node_idx = 0
    for node in graph.nodes:
        last_wait_node_idx = max(
            node_indices.get(node, last_wait_node_idx), last_wait_node_idx
        )
        if node == orig_comm_blocks[-1].wait_nodes[0]:
            break

    if split_and_reshape:
        fused_wait_node = fused_comm_block.wait_nodes[0]
        with graph.inserting_after(fused_wait_node):
            split_node = call_function(
                graph,
                aten.split,
                (
                    fused_wait_node,
                    [math.prod(cast(List[int], cb.shape)) for cb in orig_comm_blocks],
                ),
            )
        with graph.inserting_after(split_node):
            fused_outputs = []
            for idx, comm_block in enumerate(orig_comm_blocks):
                split_idx_node = call_function(
                    graph, operator.getitem, (split_node, idx)
                )
                with graph.inserting_after(split_idx_node):
                    fused_outputs.append(
                        call_function(
                            graph, aten.reshape, (split_idx_node, comm_block.shape)
                        )
                    )
    else:
        fused_outputs = fused_comm_block.wait_nodes

    # Scatter the fused outputs.
    incorrect_order_nodes = []
    for comm_block, fused_output in zip(orig_comm_blocks, fused_outputs):
        # Some descendant users of the orig_comm_blocks may be scheduled before
        # the fused all_reduce. For example, the user nodes of the very first
        # all_reduce may be scheduled before the second all_reduce. Since the
        # fused all_reduce is inserted right after the last all_reudce, the
        # order can be wrong.
        # `incorrect_order_nodes` records these nodes.

        orig_wait = comm_block.wait_nodes[0]
        nodes = collections.deque(list(orig_wait.users))
        while nodes:
            user_node = nodes.popleft()
            if not isinstance(user_node, fx.Node):
                continue
            if node_indices[user_node] < last_wait_node_idx:
                incorrect_order_nodes.append(user_node)
                nodes.extend(list(user_node.users))

        orig_wait.replace_all_uses_with(fused_output)

    last_fused_result = fused_outputs[0]
    fused_outputs_set = set(fused_outputs)
    for node in graph.nodes:
        if node in fused_outputs_set:
            last_fused_result = node

    # Move the incorrect_order_nodes to right after the last fused_result.
    incorrect_order_nodes = sorted(
        incorrect_order_nodes, key=lambda node: node_indices[node]
    )
    move_block_after(incorrect_order_nodes, last_fused_result)


def _fuse_allreduce(
    graph: fx.Graph,
    comm_blocks: List[CommBlock],
    node_indices: Dict[fx.Node, int],
    use_concat: bool,
) -> CommBlock:
    """Given a list of allreduce CommBlock, fuse the CommBlocks into one CommBlock."""

    if len(comm_blocks) == 1:
        return comm_blocks[0]

    # Find the last input node of all the CommBlocks. This node will be served
    # as the inserting point of the new collective op.
    last_input_node = comm_blocks[0].inputs[0]
    last_input_index = -1
    all_input_nodes = []
    for comm_block in comm_blocks:
        input_node = comm_block.inputs[0]
        all_input_nodes.append(input_node)
        index = node_indices[input_node]
        if index >= last_input_index:
            assert index != last_input_index
            last_input_node = input_node
            last_input_index = index

    if use_concat:
        fused_comm_block = _fuse_allreduce_by_concat(
            graph, last_input_node, all_input_nodes, comm_blocks[-1]
        )
    else:
        fused_comm_block = _fuse_with_coalesced_op(
            graph, last_input_node, all_input_nodes, comm_blocks[-1]
        )

    _scatter_fused_allreduce_waits(
        graph, fused_comm_block, comm_blocks, node_indices, split_and_reshape=use_concat
    )

    for comm_block in comm_blocks:
        for wait in comm_block.wait_nodes:
            graph.erase_node(wait)
        graph.erase_node(comm_block.comm_node)
    graph.eliminate_dead_code()

    return fused_comm_block


def _bucket_size_fusion(
    graph: fx.Graph, comm_blocks: List[CommBlock], bucket_size_mb: int
) -> Generator[List[CommBlock], None, None]:
    MB = 1024**2
    bucket_size = 1 * MB
    bucket_cap_size = bucket_size_mb * MB
    curr_size = 0
    curr_blocks = []

    count = 0
    fuse_count = 0
    for i, block in enumerate(comm_blocks):
        curr_blocks.append(block)
        itemsize = block.comm_node.meta["tensor_meta"].dtype.itemsize
        curr_size += cast(torch.Size, block.shape).numel() * itemsize
        count += 1
        if curr_size < bucket_size and i != len(comm_blocks) - 1:
            continue

        fuse_count += 1
        if torch.distributed.get_rank() == 0:
            logger.info(
                "DDP bucketing: block%d, count=%d, curr_size=%d, bucket_size=%d",
                fuse_count,
                count,
                curr_size,
                bucket_size,
            )

        # Set the debug counters
        counters["inductor"]["ddp_buckets"] = fuse_count
        yield curr_blocks

        bucket_size = bucket_cap_size
        curr_blocks = []
        curr_size = 0
        count = 0


def _fuse_ddp_communication(
    graph: fx.Graph, algorithm_fn: Callable[..., Any], fusion_fn: Callable[..., Any]
) -> None:
    for output in reversed(graph.nodes):
        if output.op == "output":
            break

    def ddp_reducer_filter(block: CommBlock) -> bool:
        if (
            not isinstance(block.comm_node.args[0], fx.Node)
            or block.comm_node.args[0].target != aten.div.Tensor
        ):
            return False

        if len(block.wait_nodes[0].users) != 1:
            # gradient/wait node should only be used by one user
            return False

        # Two cases:
        # 1. gradient/wait node should be directly used by the output
        # if gradient is None before bwd.
        # 2. gradient/wait node should be directly used by copy_.
        if (
            output not in block.wait_nodes[0].users
            and next(iter(block.wait_nodes[0].users)).target != aten.copy_.default
        ):
            return False

        return True

    ops = (
        torch.ops._c10d_functional.all_reduce_.default,
        torch.ops._c10d_functional.all_reduce.default,
    )
    comm_blocks = get_all_comm_blocks(graph, ops, comm_filter=ddp_reducer_filter)
    node_indices = {node: i for i, node in enumerate(graph.nodes)}

    for block in algorithm_fn(graph, comm_blocks):
        fusion_fn(graph, block, node_indices)


def fuse_ddp_with_coalesced_op(graph: fx.Graph, bucket_size_mb: int) -> None:
    _fuse_ddp_communication(
        graph,
        partial(_bucket_size_fusion, bucket_size_mb=bucket_size_mb),
        partial(_fuse_allreduce, use_concat=False),
    )


def fuse_ddp_with_concat_op(graph: fx.Graph, bucket_size_mb: int) -> None:
    _fuse_ddp_communication(
        graph,
        partial(_bucket_size_fusion, bucket_size_mb=bucket_size_mb),
        partial(_fuse_allreduce, use_concat=True),
    )


def schedule_comm_wait(graph: fx.Graph) -> None:
    """
    Delay the execution of wait tensors of allreduce until its first user.

    This algorithm considers the intermediate users, like split, getitem,
    of the wait node and schedule those intermediate users as well.
    This will result in a better overlapping result.
    """
    ops = (
        torch.ops._c10d_functional.all_reduce_.default,
        torch.ops._c10d_functional.all_reduce.default,
        torch.ops._c10d_functional.all_reduce_coalesced.default,
        torch.ops._c10d_functional.all_reduce_coalesced_.default,
    )
    comm_blocks = get_all_comm_blocks(graph, ops)
    if not comm_blocks:
        return

    # Find all the end users.
    allreduce_users: Set[fx.Node] = set()
    for allreduce in comm_blocks:
        for output in allreduce.outputs:
            allreduce_users.update(output.users)

    node_indices = {node: i for i, node in enumerate(graph.nodes)}
    for allreduce in comm_blocks:
        # Find the earliest/first user -- target_node.
        assert (
            len(allreduce.outputs) >= 1
        ), f"Found a allreduce that has zero outputs/users -- {allreduce}."
        # Initialize the target node to avoid typing issues.
        target_node = next(iter(next(iter(allreduce.outputs)).users))
        target_node_index = 2**31
        for user in (user for output in allreduce.outputs for user in output.users):
            index = node_indices[user]
            if index < target_node_index:
                target_node = user
                target_node_index = index

        # Move wait nodes and all the subsequent nodes in the comm_block to
        # before the first user -- target_node.
        wait_idx = -1
        for wait_idx, node in enumerate(allreduce.node_list):
            if node == allreduce.wait_nodes[0]:
                break
        assert wait_idx >= 0
        move_block_before(allreduce.node_list[wait_idx:], target_node)


def fuse_ddp_communication(
    graph: fx.Graph, passes: List[Union[Callable[..., None], str]], bucket_size_mb: int
) -> None:
    for i, pa in enumerate(passes):
        with GraphTransformObserver(
            graph.owning_module,
            f"fuse_ddp_communication_pass_{i}",
            config.trace.log_url_for_graph_xform,
        ):
            if isinstance(pa, str):
                func = globals()[pa]
            else:
                func = pa
            if "bucket_size_mb" in {
                v.name for v in inspect.signature(func).parameters.values()
            }:
                func(graph, bucket_size_mb=bucket_size_mb)
            else:
                func(graph)
