
    wg                     r    d dl mZ d dlmZmZ d dlmZ d dlmc m	Z	 d dlm
Z
 efdZefdZe
fdZefd	Zy)
    )partial)chainminimize)identityN)yieldifyc           
          |D ]2  }t        | |      s ||   t        t        t        ||      |        c S   ||       S )a   Apply functions onto recursive containers (tree).

    Explanation
    ===========

    join - a dictionary mapping container types to functions
      e.g. ``{list: minimize, tuple: chain}``

    Keys are containers/iterables.  Values are functions [a] -> a.

    Examples
    ========

    >>> from sympy.strategies.tree import treeapply
    >>> tree = [(3, 2), (4, 1)]
    >>> treeapply(tree, {list: max, tuple: min})
    2

    >>> add = lambda *args: sum(args)
    >>> def mul(*args):
    ...     total = 1
    ...     for arg in args:
    ...         total *= arg
    ...     return total
    >>> treeapply(tree, {list: mul, tuple: add})
    25
    )joinleaf)
isinstancemapr   	treeapply)treer	   r
   typs       Z/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/strategies/tree.pyr   r      sQ    8  )dC 49c')$T"J"&( ) )) :    c                 ^    t        t        |      }t        | t        |t        t
        ifi |S )a   Execute a strategic tree.  Select alternatives greedily

    Trees
    -----

    Nodes in a tree can be either

    function - a leaf
    list     - a selection among operations
    tuple    - a sequence of chained operations

    Textual examples
    ----------------

    Text: Run f, then run g, e.g. ``lambda x: g(f(x))``
    Code: ``(f, g)``

    Text: Run either f or g, whichever minimizes the objective
    Code: ``[f, g]``

    Textx: Run either f or g, whichever is better, then run h
    Code: ``([f, g], h)``

    Text: Either expand then simplify or try factor then foosimp. Finally print
    Code: ``([(expand, simplify), (factor, foosimp)], print)``

    Objective
    ---------

    "Better" is determined by the objective keyword.  This function makes
    choices to minimize the objective.  It defaults to the identity.

    Examples
    ========

    >>> from sympy.strategies.tree import greedy
    >>> inc    = lambda x: x + 1
    >>> dec    = lambda x: x - 1
    >>> double = lambda x: 2*x

    >>> tree = [inc, (dec, double)] # either inc or dec-then-double
    >>> fn = greedy(tree)
    >>> fn(4)  # lowest value comes from the inc
    5
    >>> fn(1)  # lowest value comes from dec then double
    0

    This function selects between options in a tuple.  The result is chosen
    that minimizes the objective function.

    >>> fn = greedy(tree, objective=lambda x: -x)  # maximize
    >>> fn(4)  # highest value comes from the dec then double
    6
    >>> fn(1)  # highest value comes from the inc
    2

    Greediness
    ----------

    This is a greedy algorithm.  In the example:

        ([a, b], c)  # do either a or b, then do c

    the choice between running ``a`` or ``b`` is made without foresight to c
    )	objective)r   r   r   listtupler   )r   r   kwargsoptimizes       r   greedyr   +   s,    D x95HTD(E59DVDDr   c                 n    t        | t        t        j                  t        t        j
                  i|      S )a   Execute a strategic tree.  Return all possibilities.

    Returns a lazy iterator of all possible results

    Exhaustiveness
    --------------

    This is an exhaustive algorithm.  In the example

        ([a, b], [c, d])

    All of the results from

        (a, c), (b, c), (a, d), (b, d)

    are returned.  This can lead to combinatorial blowup.

    See sympy.strategies.greedy for details on input
    )r
   )r   r   branch	multiplexr   r   )r   r
   s     r   
allresultsr   q   s+    ( TD&"2"2E6<<H   r   c                       fdS )Nc           
      P    t        t         t        fi |                   S )N)key)minr   r   )exprr   r   r   s    r   <lambda>zbrute.<locals>.<lambda>   s(    E"<*T"<V"<T"BC )+ r    )r   r   r   s   ```r   bruter$      s    + +r   )	functoolsr   sympy.strategiesr   r   sympy.strategies.corer   sympy.strategies.branch
strategiesr   r   r   r   r   r$   r#   r   r   <module>r*      sC     , * ( ( ,  (  F $ CEL #  0 # +r   