
    wg                     :    d Z ddlmZ ddlmZ ddlmZ d ZddZy)	aB  
Convergence acceleration / extrapolation methods for series and
sequences.

References:
Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for
Scientists and Engineers: Asymptotic Methods and Perturbation Theory",
Springer 1999. (Shanks transformation: pp. 368-375, Richardson
extrapolation: pp. 375-377.)
    )Integer)S)	factorialc           	      "   t         j                  }t        d|dz         D ]l  }|| j                  |t	        ||z               j                         ||z   |z  z  t         j                  ||z   z  z  t        |      t        ||z
        z  z  z  }n |S )a  
    Calculate an approximation for lim k->oo A(k) using Richardson
    extrapolation with the terms A(n), A(n+1), ..., A(n+N+1).
    Choosing N ~= 2*n often gives good results.

    Examples
    ========

    A simple example is to calculate exp(1) using the limit definition.
    This limit converges slowly; n = 100 only produces two accurate
    digits:

        >>> from sympy.abc import n
        >>> e = (1 + 1/n)**n
        >>> print(round(e.subs(n, 100).evalf(), 10))
        2.7048138294

    Richardson extrapolation with 11 appropriately chosen terms gives
    a value that is accurate to the indicated precision:

        >>> from sympy import E
        >>> from sympy.series.acceleration import richardson
        >>> print(round(richardson(e, n, 10, 20).evalf(), 10))
        2.7182818285
        >>> print(round(E.evalf(), 10))
        2.7182818285

    Another useful application is to speed up convergence of series.
    Computing 100 terms of the zeta(2) series 1/k**2 yields only
    two accurate digits:

        >>> from sympy.abc import k, n
        >>> from sympy import Sum
        >>> A = Sum(k**-2, (k, 1, n))
        >>> print(round(A.subs(n, 100).evalf(), 10))
        1.6349839002

    Richardson extrapolation performs much better:

        >>> from sympy import pi
        >>> print(round(richardson(A, n, 10, 20).evalf(), 10))
        1.6449340668
        >>> print(round(((pi**2)/6).evalf(), 10))     # Exact value
        1.6449340668

    r      )r   Zerorangesubsr   doitNegativeOner   )AknNsjs         ^/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/series/acceleration.py
richardsonr      s    ^ 	
A1a!e_ J	affQA',,.!a%!;mma!e$%(1!yQ7G(GI 	JJ H    c           	      h   t        ||z   dz         D cg c]+  }| j                  |t        |            j                         - }}|dd }t        d|dz         D ]M  }t        |||z   dz         D ]1  }||dz
     ||   ||dz      }
}	}|
|z  |	dz  z
  |
|z   d|	z  z
  z  ||<   3 |dd }O ||   S c c}w )a7  
    Calculate an approximation for lim k->oo A(k) using the n-term Shanks
    transformation S(A)(n). With m > 1, calculate the m-fold recursive
    Shanks transformation S(S(...S(A)...))(n).

    The Shanks transformation is useful for summing Taylor series that
    converge slowly near a pole or singularity, e.g. for log(2):

        >>> from sympy.abc import k, n
        >>> from sympy import Sum, Integer
        >>> from sympy.series.acceleration import shanks
        >>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n))
        >>> print(round(A.subs(n, 100).doit().evalf(), 10))
        0.6881721793
        >>> print(round(shanks(A, n, 25).evalf(), 10))
        0.6931396564
        >>> print(round(shanks(A, n, 25, 5).evalf(), 10))
        0.6931471806

    The correct value is 0.6931471805599453094172321215.
       Nr   )r	   r
   r   r   )r   r   r   mr   tabletable2ixyzs              r   shanksr   G   s    , 49Q3CDaQVVAwqz"'')DED1XF1a!e_ q!a%!)$ 	5AAElE!HeAEl!qA1q!tA!4F1I	5 q		
 8O Es   0B/N)r   )	__doc__sympy.core.numbersr   sympy.core.singletonr   (sympy.functions.combinatorial.factorialsr   r   r    r   r   <module>r%      s    	 ' " >3lr   