
    wg                     f    d Z ddlmZ ddlmZ ddlmZ ddlmZ	m
ZmZ ddZddZdd	Z
dd
ddZy)z,Functions returning normal forms of matrices    )ZZ)Poly)DomainMatrix)smith_normal_forminvariant_factorshermite_normal_formNc                     t        | dd      }| j                  d       } t        j                  |       }|xs |}||j	                  |      }|S )zConvert Matrix to DomainMatrixringNc                 F    t        | t              r| j                         S | S N)
isinstancer   as_expr)es    _/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/matrices/normalforms.py<lambda>z_to_domain.<locals>.<lambda>   s    Z4-@aiik a     )getattr	applyfuncr   from_Matrix
convert_to)mdomainr
   dMs       r   
_to_domainr      sS     1fd#D	GHA		!	!!	$B^tF]]6"Ir   c                 L    t        | |      }t        |      j                         S )a  
    Return the Smith Normal Form of a matrix `m` over the ring `domain`.
    This will only work if the ring is a principal ideal domain.

    Examples
    ========

    >>> from sympy import Matrix, ZZ
    >>> from sympy.matrices.normalforms import smith_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(smith_normal_form(m, domain=ZZ))
    Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])

    )r   _snf	to_Matrix)r   r   r   s      r   r   r      s#     
Av	B8r   c                     t        | |      t              }t        fd|D              }t        | d      r;| j                  j
                  r%| j                  fdt        fd|D              }|S )a9  
    Return the tuple of abelian invariants for a matrix `m`
    (as in the Smith-Normal form)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
    .. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf

    c              3   T   K   | ]  }j                   j                  |       ! y wr   )r   to_sympy).0fr   s     r   	<genexpr>z$invariant_factors.<locals>.<genexpr><   s      ;aBII&&q);s   %(r
   c                 H    t        | j                  j                        S )N)r   )r   symbolsr   )r"   Ks    r   r   z#invariant_factors.<locals>.<lambda>A   s    Q		!(( C r   c              3   .   K   | ]  } |        y wr    )r!   r"   to_polys     r   r#   z$invariant_factors.<locals>.<genexpr>B   s     81GAJ8s   )r   _invftuplehasattrr
   is_PolynomialRing)r   r   factorsr&   r   r)   s      @@@r   r   r   .   sd     
Av	BBiG;7;;Gq&66##ACG888GNr   FD
check_rankc                    |)t        j                  |      st        t        |            }t        | j                  ||      j                         S )a  
    Compute the Hermite Normal Form of a Matrix *A* of integers.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.matrices.normalforms import hermite_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(hermite_normal_form(m))
    Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])

    Parameters
    ==========

    A : $m \times n$ ``Matrix`` of integers.

    D : int, optional
        Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
        being any multiple of $\det(W)$ may be provided. In this case, if *A*
        also has rank $m$, then we may use an alternative algorithm that works
        mod *D* in order to prevent coefficient explosion.

    check_rank : boolean, optional (default=False)
        The basic assumption is that, if you pass a value for *D*, then
        you already believe that *A* has rank $m$, so we do not waste time
        checking it for you. If you do want this to be checked (and the
        ordinary, non-modulo *D* algorithm to be used if the check fails), then
        set *check_rank* to ``True``.

    Returns
    =======

    ``Matrix``
        The HNF of matrix *A*.

    Raises
    ======

    DMDomainError
        If the domain of the matrix is not :ref:`ZZ`.

    DMShapeError
        If the mod *D* algorithm is used but the matrix has more rows than
        columns.

    References
    ==========

    .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
       (See Algorithms 2.4.5 and 2.4.8.)

    r/   )r   of_typeint_hnf_repr   )Ar0   r1   s      r   r   r   F   s=    n 	}RZZ]s1vJ!
3==??r   r   )__doc__sympy.polys.domains.integerringr   sympy.polys.polytoolsr   sympy.polys.matricesr    sympy.polys.matrices.normalformsr   r   r   r*   r   r5   r   r(   r   r   <module>r=      s7    2 . & -  &0 !% 9@r   