
    wgv                        d dl Z d dlmZ d dlmZ d dlmZ d dlmZ d dl	m
Z
mZ d dlmZ d dlmZ d d	lmZ d
dlmZ d
dlmZmZ d
dlmZ d
dlmZmZ d
dlmZmZ ddgiZd Z  G d de      Z!d Z" G d de!e      Z#e#xZ$Z%e&fdZ'e&fdZ(d2dZ)d Z*d Z+d Z,d Z-d Z.d  Z/ ed!"      d#        Z0d3d%Z1d& Z2d$d'd(d)Z3d4d*Z4d5d+Z5d, Z6d- Z7d. Z8	 	 d6d/Z9d7d0Z:d1 Z;y)8    N)Basic)S)Symbol)sympify)cossin)doctest_depends_on)sympy_deprecation_warning)is_sequence   )
ShapeError)	_cholesky_LDLdecomposition)
MatrixBase)MutableRepMatrix	RepMatrix)_lower_triangular_solve_upper_triangular_solve)symarraynumpyc                     | j                   S )zReturns True if x is zero.)is_zero)xs    Y/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/matrices/dense.py_iszeror      s    99    c                       e Zd ZdZdZdZdZed        Zd Z	d Z
d Zdd	Zdd
Zd Zd Zej                  e_        ej                  e_        ej                  e_        ej                  e_        y)DenseMatrixzJMatrix implementation based on DomainMatrix as the internal representationFgQ$@   c                 >    t        ddd       | j                         S )Nzy
            The private _mat attribute of Matrix is deprecated. Use the
            .flat() method instead.
            z1.9z$deprecated-private-matrix-attributes)deprecated_since_versionactive_deprecations_target)r
   flatselfs    r   _matzDenseMatrix._mat)   s%    ! &+'M	
 yy{r   c                     | j                  |j                  dd      |j                  dt              |j                  dd            S )NmethodGE
iszerofunctry_block_diagF)r(   r*   r+   )invgetr   )r%   kwargss     r   _eval_inversezDenseMatrix._eval_inverse6   sD    xxvzz(D9#)::lG#D'-zz2BE'J  L 	Lr   c                 `    ddl m} |j                  | j                  j	                               S )z4Returns an Immutable version of this Matrix
        r   )ImmutableDenseMatrix)	immutabler1   _fromrep_repcopy)r%   clss     r   as_immutablezDenseMatrix.as_immutable;   s!     	;||DIINN,--r   c                     t        |       S )aB  Returns a mutable version of this matrix

        Examples
        ========

        >>> from sympy import ImmutableMatrix
        >>> X = ImmutableMatrix([[1, 2], [3, 4]])
        >>> Y = X.as_mutable()
        >>> Y[1, 1] = 5 # Can set values in Y
        >>> Y
        Matrix([
        [1, 2],
        [3, 5]])
        )Matrixr$   s    r   
as_mutablezDenseMatrix.as_mutableA   s     d|r   c                     t        | |      S N)	hermitian)r   r%   r=   s     r   choleskyzDenseMatrix.choleskyR   s    33r   c                     t        | |      S r<   )r   r>   s     r   LDLdecompositionzDenseMatrix.LDLdecompositionU   s     ;;r   c                     t        | |      S N)r   r%   rhss     r   lower_triangular_solvez"DenseMatrix.lower_triangular_solveX       &tS11r   c                     t        | |      S rC   )r   rD   s     r   upper_triangular_solvez"DenseMatrix.upper_triangular_solve[   rG   r   NT)__name__
__module____qualname____doc__is_MatrixExpr_op_priority_class_prioritypropertyr&   r/   r7   r:   r?   rA   rF   rI   r   r   r   r    r   r   r   r      s    T MLO
 
L
."4<22 &/%6%6H%6%>%>%<%D%D"%<%D%D"r   r   c                     t        | dd      r| j                         S t        | t              r| S t	        | d      r>| j                         }t        |j                        dk(  rt        |      S t        |       S | S )z0Return a matrix as a Matrix, otherwise return x.	is_MatrixF	__array__r   )
getattrr:   
isinstancer   hasattrrV   lenshaper   r9   )r   as     r   _force_mutabler]   d   sg    q+u%||~	Au		K	 KKMqww<11:ayHr   c                       e Zd Zd Zy)MutableDenseMatrixc                 ~    ddl m} | j                         j                         D ]  \  \  }}} ||fi || ||f<    y)zApplies simplify to the elements of a matrix in place.

        This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))

        See Also
        ========

        sympy.simplify.simplify.simplify
        r   )simplifyN)sympy.simplify.simplifyra   todokitems)r%   r.   	_simplifyijelements         r   ra   zMutableDenseMatrix.simplifyt   sE     	B#zz|113 	6OFQG"75f5DAJ	6r   N)rK   rL   rM   ra   rS   r   r   r_   r_   r   s    6r   r_   c                 f    ddl m}  |t        |       |      }t        |       D ]
  \  }}|||<    |S )zmConverts Python list of SymPy expressions to a NumPy array.

    See Also
    ========

    matrix2numpy
    r   empty)r   rk   rZ   	enumerate)ldtyperk   r\   rf   ss         r   
list2numpyrp      s<     c!feA! 1!Hr   c                     ddl m}  || j                  |      }t        | j                        D ](  }t        | j
                        D ]  }| ||f   |||f<    * |S )zYConverts SymPy's matrix to a NumPy array.

    See Also
    ========

    list2numpy
    r   rj   )r   rk   r[   rangerowscols)mrn   rk   r\   rf   rg   s         r   matrix2numpyrv      sa     agguA166] qvv 	A1gAadG	 Hr   c                    t        |t              r|dk  rt        dj                  |            | |k(  rt        dj                  | |            | |fD ]>  }t        |t              r|dk  s	||dz
  kD  s!t        dj                  |dz
  | |             t	        |      }t        |      }t        |      }t        |      }||| | f<   ||||f<   ||| |f<   | ||| f<   |S )a  Returns a a Givens rotation matrix, a a rotation in the
    plane spanned by two coordinates axes.

    Explanation
    ===========

    The Givens rotation corresponds to a generalization of rotation
    matrices to any number of dimensions, given by:

    .. math::
        G(i, j, \theta) =
            \begin{bmatrix}
                1   & \cdots &    0   & \cdots &    0   & \cdots &    0   \\
                \vdots & \ddots & \vdots &        & \vdots &        & \vdots \\
                0   & \cdots &    c   & \cdots &   -s   & \cdots &    0   \\
                \vdots &        & \vdots & \ddots & \vdots &        & \vdots \\
                0   & \cdots &    s   & \cdots &    c   & \cdots &    0   \\
                \vdots &        & \vdots &        & \vdots & \ddots & \vdots \\
                0   & \cdots &    0   & \cdots &    0   & \cdots &    1
            \end{bmatrix}

    Where $c = \cos(\theta)$ and $s = \sin(\theta)$ appear at the intersections
    ``i``\th and ``j``\th rows and columns.

    For fixed ``i > j``\, the non-zero elements of a Givens matrix are
    given by:

    - $g_{kk} = 1$ for $k \ne i,\,j$
    - $g_{kk} = c$ for $k = i,\,j$
    - $g_{ji} = -g_{ij} = -s$

    Parameters
    ==========

    i : int between ``0`` and ``dim - 1``
        Represents first axis
    j : int between ``0`` and ``dim - 1``
        Represents second axis
    dim : int bigger than 1
        Number of dimentions. Defaults to 3.

    Examples
    ========

    >>> from sympy import pi, rot_givens

    A counterclockwise rotation of pi/3 (60 degrees) around
    the third axis (z-axis):

    >>> rot_givens(1, 0, pi/3)
    Matrix([
    [      1/2, -sqrt(3)/2, 0],
    [sqrt(3)/2,        1/2, 0],
    [        0,          0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_givens(1, 0, pi/2)
    Matrix([
    [0, -1, 0],
    [1,  0, 0],
    [0,  0, 1]])

    This can be generalized to any number
    of dimensions:

    >>> rot_givens(1, 0, pi/2, dim=4)
    Matrix([
    [0, -1, 0, 0],
    [1,  0, 0, 0],
    [0,  0, 1, 0],
    [0,  0, 0, 1]])

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Givens_rotation

    See Also
    ========

    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (clockwise around the x axis)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (clockwise around the z axis)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (counterclockwise around the y axis)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
       z/dim must be an integer biggen than one, got {}.z'i and j must be different, got ({}, {})r   r   z=i and j must be integers between 0 and {}, got i={} and j={}.)rX   int
ValueErrorformatr   r   r   eye)rf   rg   thetadimijcro   Ms           r   
rot_givensr      s   ~ c337 ##)6#;0 	0 	Av ((.q!6 	6 !f K"c"b1fS1W 66<fSUAq6IK KK
 ENEE
AE
ACAAadGAadGAadGbAadGHr   c                      t        dd| d      S )az  Returns a rotation matrix for a rotation of theta (in radians)
    about the 3-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    clockwise rotation around the `z`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                 \cos(\theta) & \sin(\theta) & 0 \\
                -\sin(\theta) & \cos(\theta) & 0 \\
                            0 &            0 & 1
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_axis3

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis3(theta)
    Matrix([
    [       1/2, sqrt(3)/2, 0],
    [-sqrt(3)/2,       1/2, 0],
    [         0,         0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis3(pi/2)
    Matrix([
    [ 0, 1, 0],
    [-1, 0, 0],
    [ 0, 0, 1]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (clockwise around the x axis)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    r   r      r~   r   r}   s    r   	rot_axis3r   '      h aEq))r   c                      t        dd| d      S )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 2-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    clockwise rotation around the `y`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                \cos(\theta) & 0 & -\sin(\theta) \\
                           0 & 1 &             0 \\
                \sin(\theta) & 0 &  \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_axis2

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis2(theta)
    Matrix([
    [      1/2, 0, -sqrt(3)/2],
    [        0, 1,          0],
    [sqrt(3)/2, 0,        1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis2(pi/2)
    Matrix([
    [0, 0, -1],
    [0, 1,  0],
    [1, 0,  0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    rx   r   r   r   r   r   s    r   	rot_axis2r   ^  r   r   c                      t        dd| d      S )az  Returns a rotation matrix for a rotation of theta (in radians)
    about the 1-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    clockwise rotation around the `x`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                1 &             0 &            0 \\
                0 &  \cos(\theta) & \sin(\theta) \\
                0 & -\sin(\theta) & \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_axis1

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis1(theta)
    Matrix([
    [1,          0,         0],
    [0,        1/2, sqrt(3)/2],
    [0, -sqrt(3)/2,       1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis1(pi/2)
    Matrix([
    [1,  0, 0],
    [0,  0, 1],
    [0, -1, 0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (clockwise around the z axis)
    r   rx   r   r   r   r   s    r   	rot_axis1r     r   r   c                      t        dd| d      S )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 3-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    counterclockwise rotation around the `z`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                \cos(\theta) & -\sin(\theta) & 0 \\
                \sin(\theta) &  \cos(\theta) & 0 \\
                           0 &             0 & 1
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_ccw_axis3

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_ccw_axis3(theta)
    Matrix([
    [      1/2, -sqrt(3)/2, 0],
    [sqrt(3)/2,        1/2, 0],
    [        0,          0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_ccw_axis3(pi/2)
    Matrix([
    [0, -1, 0],
    [1,  0, 0],
    [0,  0, 1]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (clockwise around the z axis)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (counterclockwise around the y axis)
    r   r   r   r   r   r   s    r   rot_ccw_axis3r     r   r   c                      t        dd| d      S )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 2-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    counterclockwise rotation around the `y`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                 \cos(\theta) & 0 & \sin(\theta) \\
                            0 & 1 &            0 \\
                -\sin(\theta) & 0 & \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_ccw_axis2

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_ccw_axis2(theta)
    Matrix([
    [       1/2, 0, sqrt(3)/2],
    [         0, 1,         0],
    [-sqrt(3)/2, 0,       1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_ccw_axis2(pi/2)
    Matrix([
    [ 0,  0,  1],
    [ 0,  1,  0],
    [-1,  0,  0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (clockwise around the y axis)
    rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (counterclockwise around the x axis)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    r   rx   r   r   r   r   s    r   rot_ccw_axis2r     r   r   c                      t        dd| d      S )a  Returns a rotation matrix for a rotation of theta (in radians)
    about the 1-axis.

    Explanation
    ===========

    For a right-handed coordinate system, this corresponds to a
    counterclockwise rotation around the `x`-axis, given by:

    .. math::

        R  = \begin{bmatrix}
                1 &            0 &             0 \\
                0 & \cos(\theta) & -\sin(\theta) \\
                0 & \sin(\theta) &  \cos(\theta)
            \end{bmatrix}

    Examples
    ========

    >>> from sympy import pi, rot_ccw_axis1

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_ccw_axis1(theta)
    Matrix([
    [1,         0,          0],
    [0,       1/2, -sqrt(3)/2],
    [0, sqrt(3)/2,        1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_ccw_axis1(pi/2)
    Matrix([
    [1, 0,  0],
    [0, 0, -1],
    [0, 1,  0]])

    See Also
    ========

    rot_givens: Returns a Givens rotation matrix (generalized rotation for
        any number of dimensions)
    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis (clockwise around the x axis)
    rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis (counterclockwise around the y axis)
    rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis (counterclockwise around the z axis)
    rx   r   r   r   r   r   s    r   rot_ccw_axis1r   :  r   r   )r   )modulesc                     ddl m}m}  ||t              } ||      D ]3  }t	        | ddj                  t        t        |            fi |||<   5 |S )aI  Create a numpy ndarray of symbols (as an object array).

    The created symbols are named ``prefix_i1_i2_``...  You should thus provide a
    non-empty prefix if you want your symbols to be unique for different output
    arrays, as SymPy symbols with identical names are the same object.

    Parameters
    ----------

    prefix : string
      A prefix prepended to the name of every symbol.

    shape : int or tuple
      Shape of the created array.  If an int, the array is one-dimensional; for
      more than one dimension the shape must be a tuple.

    \*\*kwargs : dict
      keyword arguments passed on to Symbol

    Examples
    ========
    These doctests require numpy.

    >>> from sympy import symarray
    >>> symarray('', 3)
    [_0 _1 _2]

    If you want multiple symarrays to contain distinct symbols, you *must*
    provide unique prefixes:

    >>> a = symarray('', 3)
    >>> b = symarray('', 3)
    >>> a[0] == b[0]
    True
    >>> a = symarray('a', 3)
    >>> b = symarray('b', 3)
    >>> a[0] == b[0]
    False

    Creating symarrays with a prefix:

    >>> symarray('a', 3)
    [a_0 a_1 a_2]

    For more than one dimension, the shape must be given as a tuple:

    >>> symarray('a', (2, 3))
    [[a_0_0 a_0_1 a_0_2]
     [a_1_0 a_1_1 a_1_2]]
    >>> symarray('a', (2, 3, 2))
    [[[a_0_0_0 a_0_0_1]
      [a_0_1_0 a_0_1_1]
      [a_0_2_0 a_0_2_1]]
    <BLANKLINE>
     [[a_1_0_0 a_1_0_1]
      [a_1_1_0 a_1_1_1]
      [a_1_2_0 a_1_2_1]]]

    For setting assumptions of the underlying Symbols:

    >>> [s.is_real for s in symarray('a', 2, real=True)]
    [True, True]
    r   )rk   ndindex)rn   _)r   rk   r   objectr   joinmapstr)prefixr[   r.   rk   r   arrindexs          r   r   r   q  sZ    B %
V
$C &vsxxC/HI &$&E
& Jr   Tc                      t        t        t                      |s fd}n fd}t               }t	        |||      j                         S )aY  Given linear difference operator L of order 'k' and homogeneous
       equation Ly = 0 we want to compute kernel of L, which is a set
       of 'k' sequences: a(n), b(n), ... z(n).

       Solutions of L are linearly independent iff their Casoratian,
       denoted as C(a, b, ..., z), do not vanish for n = 0.

       Casoratian is defined by k x k determinant::

                  +  a(n)     b(n)     . . . z(n)     +
                  |  a(n+1)   b(n+1)   . . . z(n+1)   |
                  |    .         .     .        .     |
                  |    .         .       .      .     |
                  |    .         .         .    .     |
                  +  a(n+k-1) b(n+k-1) . . . z(n+k-1) +

       It proves very useful in rsolve_hyper() where it is applied
       to a generating set of a recurrence to factor out linearly
       dependent solutions and return a basis:

       >>> from sympy import Symbol, casoratian, factorial
       >>> n = Symbol('n', integer=True)

       Exponential and factorial are linearly independent:

       >>> casoratian([2**n, factorial(n)], n) != 0
       True

    c                 4    |   j                  | z         S rC   subsrf   rg   nseqss     r   <lambda>zcasoratian.<locals>.<lambda>  s    aaQ/ r   c                 .    |   j                  |       S rC   r   r   s     r   r   zcasoratian.<locals>.<lambda>  s    aa+ r   )listr   r   rZ   r9   det)r   r   zerofks   ``   r   
casoratianr     sC    > GT"#D/+D	A!Q?  r   c                  ,    t        j                  | i |S )z`Create square identity matrix n x n

    See Also
    ========

    diag
    zeros
    ones
    )r9   r|   argsr.   s     r   r|   r|     s     ::t&v&&r   Fstrictunpackc                 2    t        j                  || |d|S )aK  Returns a matrix with the provided values placed on the
    diagonal. If non-square matrices are included, they will
    produce a block-diagonal matrix.

    Examples
    ========

    This version of diag is a thin wrapper to Matrix.diag that differs
    in that it treats all lists like matrices -- even when a single list
    is given. If this is not desired, either put a `*` before the list or
    set `unpack=True`.

    >>> from sympy import diag

    >>> diag([1, 2, 3], unpack=True)  # = diag(1,2,3) or diag(*[1,2,3])
    Matrix([
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]])

    >>> diag([1, 2, 3])  # a column vector
    Matrix([
    [1],
    [2],
    [3]])

    See Also
    ========
    .matrixbase.MatrixBase.eye
    .matrixbase.MatrixBase.diagonal
    .matrixbase.MatrixBase.diag
    .expressions.blockmatrix.BlockMatrix
    r   )r9   diag)r   r   valuesr.   s       r   r   r     s    D ;;vfGGGr   c                 .    t        j                  | |ddS )a  Apply the Gram-Schmidt process to a set of vectors.

    Parameters
    ==========

    vlist : List of Matrix
        Vectors to be orthogonalized for.

    orthonormal : Bool, optional
        If true, return an orthonormal basis.

    Returns
    =======

    vlist : List of Matrix
        Orthogonalized vectors

    Notes
    =====

    This routine is mostly duplicate from ``Matrix.orthogonalize``,
    except for some difference that this always raises error when
    linearly dependent vectors are found, and the keyword ``normalize``
    has been named as ``orthonormal`` in this function.

    See Also
    ========

    .matrixbase.MatrixBase.orthogonalize

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
    T)	normalize	rankcheck)r_   orthogonalize)vlistorthonormals     r   GramSchmidtr     s    H ++	+ r   c                 0   t        |t              rGd|j                  vrt        d      |j                  dk(  r|j
                  }|j                         d   }t        |      rt        |      }|st        d      t        d      t        | d      st        d| z        t        |      }||z   }t        |      }t        |      D ]K  \  }}t        |d      st        d| z        t        |      D ]  }	|j                  ||	         |||	|z   f<     M t        |      D ]D  }	t        |	|      D ]3  }
| j                  ||	         j                  ||
         ||	|z   |
|z   f<   5 F t        |      D ]"  }	t        |	dz   |      D ]  }
||	|
f   ||
|	f<    $ |S )a
  Compute Hessian matrix for a function f wrt parameters in varlist
    which may be given as a sequence or a row/column vector. A list of
    constraints may optionally be given.

    Examples
    ========

    >>> from sympy import Function, hessian, pprint
    >>> from sympy.abc import x, y
    >>> f = Function('f')(x, y)
    >>> g1 = Function('g')(x, y)
    >>> g2 = x**2 + 3*y
    >>> pprint(hessian(f, (x, y), [g1, g2]))
    [                   d               d            ]
    [     0        0    --(g(x, y))     --(g(x, y))  ]
    [                   dx              dy           ]
    [                                                ]
    [     0        0        2*x              3       ]
    [                                                ]
    [                     2               2          ]
    [d                   d               d           ]
    [--(g(x, y))  2*x   ---(f(x, y))   -----(f(x, y))]
    [dx                   2            dy dx         ]
    [                   dx                           ]
    [                                                ]
    [                     2               2          ]
    [d                   d               d           ]
    [--(g(x, y))   3   -----(f(x, y))   ---(f(x, y)) ]
    [dy                dy dx              2          ]
    [                                   dy           ]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hessian_matrix

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.jacobian
    wronskian
    r   z)`varlist` must be a column or row vector.r   z `len(varlist)` must not be zero.z*Improper variable list in hessian functiondiffz'Function `f` (%s) is not differentiable)rX   r   r[   r   rt   Ttolistr   rZ   rz   rW   zerosrl   rr   r   )r   varlistconstraintsr   ru   Noutr   grf   rg   s              r   hessianr   E  s   X ':&GMM!HII<<1iiG.."1%7L?@@EFF1fBQFGGKA	AA
(C+& /1q&!FJKKq 	/AFF71:.C1q5M	/	/ 1X Dq! 	DA !wqz 2 7 7
 CCAq1u	DD 1X "q1ua 	"AAqD	C1I	"" Jr   c                 0    t         j                  ||       S )z
    Create a Jordan block:

    Examples
    ========

    >>> from sympy import jordan_cell
    >>> from sympy.abc import x
    >>> jordan_cell(x, 4)
    Matrix([
    [x, 1, 0, 0],
    [0, x, 1, 0],
    [0, 0, x, 1],
    [0, 0, 0, x]])
    )size
eigenvalue)r9   jordan_block)eigenvalr   s     r   jordan_cellr     s    " A(;;r   c                 $    | j                  |      S )a  Return the Hadamard product (elementwise product) of A and B

    >>> from sympy import Matrix, matrix_multiply_elementwise
    >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
    >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
    >>> matrix_multiply_elementwise(A, B)
    Matrix([
    [  0, 10, 200],
    [300, 40,   5]])

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.__mul__
    )multiply_elementwise)ABs     r   matrix_multiply_elementwiser     s      !!!$$r   c                  \    d|v r|j                  d      |d<   t        j                  | i |S )zReturns a matrix of ones with ``rows`` rows and ``cols`` columns;
    if ``cols`` is omitted a square matrix will be returned.

    See Also
    ========

    zeros
    eye
    diag
    r   rt   )popr9   onesr   s     r   r   r     s0     f}Cv;;'''r   c                    |xs t        j                  |      }|| }|r| |k7  rt        d| |fz        t        | |z        }|dk7  r*|j	                  |t        t        |      |z  dz              }t        | |      }	|s/|D ](  }
t        |
|      \  }}|j                  ||      |	||f<   * |	S |D ]5  }
t        |
|      \  }}||k  s|j                  ||      x|	||f<   |	||f<   7 |	S )a  Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
    the matrix will be square. If ``symmetric`` is True the matrix must be
    square. If ``percent`` is less than 100 then only approximately the given
    percentage of elements will be non-zero.

    The pseudo-random number generator used to generate matrix is chosen in the
    following way.

    * If ``prng`` is supplied, it will be used as random number generator.
      It should be an instance of ``random.Random``, or at least have
      ``randint`` and ``shuffle`` methods with same signatures.
    * if ``prng`` is not supplied but ``seed`` is supplied, then new
      ``random.Random`` with given ``seed`` will be created;
    * otherwise, a new ``random.Random`` with default seed will be used.

    Examples
    ========

    >>> from sympy import randMatrix
    >>> randMatrix(3) # doctest:+SKIP
    [25, 45, 27]
    [44, 54,  9]
    [23, 96, 46]
    >>> randMatrix(3, 2) # doctest:+SKIP
    [87, 29]
    [23, 37]
    [90, 26]
    >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
    [0, 2, 0]
    [2, 0, 1]
    [0, 0, 1]
    >>> randMatrix(3, symmetric=True) # doctest:+SKIP
    [85, 26, 29]
    [26, 71, 43]
    [29, 43, 57]
    >>> A = randMatrix(3, seed=1)
    >>> B = randMatrix(3, seed=2)
    >>> A == B
    False
    >>> A == randMatrix(3, seed=1)
    True
    >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
    [77, 70,  0],
    [70,  0,  0],
    [ 0,  0, 88]
    z4For symmetric matrices, r must equal c, but %i != %id   )
randomRandomrz   rr   samplery   rZ   r   divmodrandint)rr   minmaxseed	symmetricpercentprngr   ru   ijkrf   rg   s                r   
randMatrixr     s   b &6==&DyQ!VOSTVWRXXYY	q1uB#~[[SRC!789aA 	-C#q>DAqll3,AadG	- H  	;C#q>DAqAv$(LLc$::!Q$!AqD'	;
 Hr   c                       D cg c]  }t        |       c} t               }|dk(  rt        j                  S t	        || fd      }|j                  |      S c c}w )av  
    Compute Wronskian for [] of functions

    ::

                         | f1       f2        ...   fn      |
                         | f1'      f2'       ...   fn'     |
                         |  .        .        .      .      |
        W(f1, ..., fn) = |  .        .         .     .      |
                         |  .        .          .    .      |
                         |  (n)      (n)            (n)     |
                         | D   (f1) D   (f2)  ...  D   (fn) |

    see: https://en.wikipedia.org/wiki/Wronskian

    See Also
    ========

    sympy.matrices.matrixbase.MatrixBase.jacobian
    hessian
    r   c                 .    |    j                  |      S rC   )r   )rf   rg   	functionsvars     r   r   zwronskian.<locals>.<lambda>2  s    )A,"3"3C"; r   )r   rZ   r   Oner9   r   )r   r   r(   r   r   Ws   ``    r   	wronskianr     sT    . &///IIAAvuuq!;<A55= 0s   Ac                  \    d|v r|j                  d      |d<   t        j                  | i |S )zReturns a matrix of zeros with ``rows`` rows and ``cols`` columns;
    if ``cols`` is omitted a square matrix will be returned.

    See Also
    ========

    ones
    eye
    diag
    r   rt   )r   r9   r   r   s     r   r   r   6  s0     f}Cv<<(((r   )r   rJ   )F)rS   )Nr   c   NFr   N)bareiss)<r   sympy.core.basicr   sympy.core.singletonr   sympy.core.symbolr   sympy.core.sympifyr   (sympy.functions.elementary.trigonometricr   r   sympy.utilities.decoratorr	   sympy.utilities.exceptionsr
   sympy.utilities.iterablesr   
exceptionsr   decompositionsr   r   
matrixbaser   	repmatrixr   r   solversr   r   __doctest_requires__r   r   r]   r_   MutableMatrixr9   r   rp   rv   r   r   r   r   r   r   r   r   r   r|   r   r   r   r   r   r   r   r   r   rS   r   r   <module>r      s    " " $ & = 8 @ 1 " 8 " 2 E &y1 
FE) FER6&6 6" , +   ! ,tn4*n4*n4*n4*n4*n4*n J'E (EX(!V' e "HJ&RJZ<(%&($ ?D!%IX>)r   