
    wg#                         d Z ddlmZmZmZmZmZ ddlmZ ddl	m
Z
 ddlmZ d ZddZd	 Zdd
ZddZ G d d      Z G d de      Zy)z Inference in propositional logic    )AndNot	conjunctsto_cnfBooleanFunction)ordered)sympify)import_modulec                     | du s| du r| S | j                   r| S | j                  rt        | j                  d         S t	        d      )z
    The symbol in this literal (without the negation).

    Examples
    ========

    >>> from sympy.abc import A
    >>> from sympy.logic.inference import literal_symbol
    >>> literal_symbol(A)
    A
    >>> literal_symbol(~A)
    A

    TFr   z#Argument must be a boolean literal.)	is_Symbolis_Notliteral_symbolargs
ValueError)literals    Z/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/logic/inference.pyr   r   	   sK      $'U*				gll1o..>??    Nc                    |r||dk7  rt        d| d      d}||dk(  r"t        d      }|d}n|dk(  rt        d      d}|dk(  rt        d      }|d}|dk(  rt        d      }|d}|d	k(  rd
dlm}  ||       S |dk(  rd
dlm}  || ||      S |dk(  rd
dlm}	  |	| |      S |dk(  rd
dlm	}
  |
| ||      S |dk(  rd
dl
m}  || |      S t        )a  
    Check satisfiability of a propositional sentence.
    Returns a model when it succeeds.
    Returns {true: true} for trivially true expressions.

    On setting all_models to True, if given expr is satisfiable then
    returns a generator of models. However, if expr is unsatisfiable
    then returns a generator containing the single element False.

    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.inference import satisfiable
    >>> satisfiable(A & ~B)
    {A: True, B: False}
    >>> satisfiable(A & ~A)
    False
    >>> satisfiable(True)
    {True: True}
    >>> next(satisfiable(A & ~A, all_models=True))
    False
    >>> models = satisfiable((A >> B) & B, all_models=True)
    >>> next(models)
    {A: False, B: True}
    >>> next(models)
    {A: True, B: True}
    >>> def use_models(models):
    ...     for model in models:
    ...         if model:
    ...             # Do something with the model.
    ...             print(model)
    ...         else:
    ...             # Given expr is unsatisfiable.
    ...             print("UNSAT")
    >>> use_models(satisfiable(A >> ~A, all_models=True))
    {A: False}
    >>> use_models(satisfiable(A ^ A, all_models=True))
    UNSAT

    dpll2z2Currently only dpll2 can handle using lra theory. z is not handled.pycosatzpycosat module is not present	minisat22pysatz3dpllr   )dpll_satisfiable)use_lra_theory)pycosat_satisfiable)minisat22_satisfiable)z3_satisfiable)r   r
   ImportErrorsympy.logic.algorithms.dpllr   sympy.logic.algorithms.dpll2&sympy.logic.algorithms.pycosat_wrapperr   (sympy.logic.algorithms.minisat22_wrapperr   !sympy.logic.algorithms.z3_wrapperr   NotImplementedError)expr	algorithm
all_modelsminimalr   r   r   r   r   r   r   r   s               r   satisfiabler+   #   s&   T  Y'%9QR[Q\\lmnn	I2	*!II%!"ABB  I+g&=I$4 :IF@%%	g	AjPP	i	N"444	k	!R$T:w??	d	DdJ//
r   c                 ,    t        t        |              S )ax  
    Check validity of a propositional sentence.
    A valid propositional sentence is True under every assignment.

    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.inference import valid
    >>> valid(A | ~A)
    True
    >>> valid(A | B)
    False

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Validity

    )r+   r   )r'   s    r   validr-   z   s    * 3t9%%%r   c                    ddl m dfd| v r| S t        |       }  |       st        d| z        |si }|j	                         D ci c]  \  }}|v s|| }}}| j                  |      }|v rt        |      S |rIt        j                  |j                         d      }t        ||      rt        |      ryyt        |      syyc c}}w )	a+  
    Returns whether the given assignment is a model or not.

    If the assignment does not specify the value for every proposition,
    this may return None to indicate 'not obvious'.

    Parameters
    ==========

    model : dict, optional, default: {}
        Mapping of symbols to boolean values to indicate assignment.
    deep: boolean, optional, default: False
        Gives the value of the expression under partial assignments
        correctly. May still return None to indicate 'not obvious'.


    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.inference import pl_true
    >>> pl_true( A & B, {A: True, B: True})
    True
    >>> pl_true(A & B, {A: False})
    False
    >>> pl_true(A & B, {A: True})
    >>> pl_true(A & B, {A: True}, deep=True)
    >>> pl_true(A >> (B >> A))
    >>> pl_true(A >> (B >> A), deep=True)
    True
    >>> pl_true(A & ~A)
    >>> pl_true(A & ~A, deep=True)
    False
    >>> pl_true(A & B & (~A | ~B), {A: True})
    >>> pl_true(A & B & (~A | ~B), {A: True}, deep=True)
    False

    r   )Symbol)TFc                     t        |       s| v ryt        | t              syt        fd| j                  D              S )NTFc              3   .   K   | ]  } |        y wN ).0arg	_validates     r   	<genexpr>z-pl_true.<locals>._validate.<locals>.<genexpr>   s     7c9S>7s   )
isinstancer   allr   )r'   r/   r6   booleans    r   r6   zpl_true.<locals>._validate   s8    dF#tw$07TYY777r   z$%s is not a valid boolean expressionTFN)sympy.core.symbolr/   r	   r   itemssubsbooldictfromkeysatomspl_truer-   r+   )	r'   modeldeepkvresultr/   r6   r:   s	         @@@r   rB   rB      s    P )G8 w4=DT??$FGG#kkm<daqG|QT<E<YYuFF|fllnd365!V}  v& =s   CCc                 z    |rt        |      }ng }|j                  t        |              t        t	        |        S )a  
    Check whether the given expr_set entail an expr.
    If formula_set is empty then it returns the validity of expr.

    Examples
    ========

    >>> from sympy.abc import A, B, C
    >>> from sympy.logic.inference import entails
    >>> entails(A, [A >> B, B >> C])
    False
    >>> entails(C, [A >> B, B >> C, A])
    True
    >>> entails(A >> B)
    False
    >>> entails(A >> (B >> A))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Logical_consequence

    )listappendr   r+   r   )r'   formula_sets     r   entailsrL      s;    2 ;'s4y!3,---r   c                   :    e Zd ZdZddZd Zd Zd Zed        Z	y)	KBz"Base class for all knowledge basesNc                 J    t               | _        |r| j                  |       y y r2   )setclauses_tellselfsentences     r   __init__zKB.__init__   s    IIh r   c                     t         r2   r&   rS   s     r   rR   zKB.tell      !!r   c                     t         r2   rX   rT   querys     r   askzKB.ask  rY   r   c                     t         r2   rX   rS   s     r   retractz
KB.retract	  rY   r   c                 >    t        t        | j                              S r2   )rI   r   rQ   )rT   s    r   clausesz
KB.clauses  s    GDMM*++r   r2   )
__name__
__module____qualname____doc__rV   rR   r]   r_   propertyra   r3   r   r   rN   rN      s-    , 
""" , ,r   rN   c                   "    e Zd ZdZd Zd Zd Zy)PropKBz=A KB for Propositional Logic.  Inefficient, with no indexing.c                 l    t        t        |            D ]  }| j                  j                  |        y)ai  Add the sentence's clauses to the KB

        Examples
        ========

        >>> from sympy.logic.inference import PropKB
        >>> from sympy.abc import x, y
        >>> l = PropKB()
        >>> l.clauses
        []

        >>> l.tell(x | y)
        >>> l.clauses
        [x | y]

        >>> l.tell(y)
        >>> l.clauses
        [y, x | y]

        N)r   r   rQ   addrT   rU   cs      r   rR   zPropKB.tell  s/    * 6(+, 	!AMMa 	!r   c                 .    t        || j                        S )a8  Checks if the query is true given the set of clauses.

        Examples
        ========

        >>> from sympy.logic.inference import PropKB
        >>> from sympy.abc import x, y
        >>> l = PropKB()
        >>> l.tell(x & ~y)
        >>> l.ask(x)
        True
        >>> l.ask(y)
        False

        )rL   rQ   r[   s     r   r]   z
PropKB.ask,  s      udmm,,r   c                 l    t        t        |            D ]  }| j                  j                  |        y)am  Remove the sentence's clauses from the KB

        Examples
        ========

        >>> from sympy.logic.inference import PropKB
        >>> from sympy.abc import x, y
        >>> l = PropKB()
        >>> l.clauses
        []

        >>> l.tell(x | y)
        >>> l.clauses
        [x | y]

        >>> l.retract(x | y)
        >>> l.clauses
        []

        N)r   r   rQ   discardrk   s      r   r_   zPropKB.retract>  s/    * 6(+, 	%AMM!!!$	%r   N)rb   rc   rd   re   rR   r]   r_   r3   r   r   rh   rh     s    G!0-$%r   rh   )NFFF)NFr2   )re   sympy.logic.boolalgr   r   r   r   r   sympy.core.sortingr   sympy.core.sympifyr	   sympy.external.importtoolsr
   r   r+   r-   rB   rL   rN   rh   r3   r   r   <module>rt      sN    & L L & & 4@4Tn&0FR.B, ,*C%R C%r   