
    wg                     T    d dl mZ d dlmZ d dlmZ d dlmZmZ ddl	m
Z
mZ d Zd Zy	)
    )Mul)S)default_sort_key)
DiracDelta	Heaviside   )Integral	integratec           	         g }d}| j                         \  }}t        |t              }|j                  |       |D ]  }|j                  r^t        |j                  t              rD|j                  |j                  |j                  |j                  dz
               |j                  }|$t        |t              r|j                  |      r|}|j                  |        |sg }|D ]  }t        |t              r#|j                  |j                  d|             6|j                  rat        |j                  t              rG|j                  |j                  |j                  j                  d|      |j                               |j                  |        ||k7  rt        | j                         }d|fS d}d|fS |t        | fS )a  change_mul(node, x)

       Rearranges the operands of a product, bringing to front any simple
       DiracDelta expression.

       Explanation
       ===========

       If no simple DiracDelta expression was found, then all the DiracDelta
       expressions are simplified (using DiracDelta.expand(diracdelta=True, wrt=x)).

       Return: (dirac, new node)
       Where:
         o dirac is either a simple DiracDelta expression or None (if no simple
           expression was found);
         o new node is either a simplified DiracDelta expressions or None (if it
           could not be simplified).

       Examples
       ========

       >>> from sympy import DiracDelta, cos
       >>> from sympy.integrals.deltafunctions import change_mul
       >>> from sympy.abc import x, y
       >>> change_mul(x*y*DiracDelta(x)*cos(x), x)
       (DiracDelta(x), x*y*cos(x))
       >>> change_mul(x*y*DiracDelta(x**2 - 1)*cos(x), x)
       (None, x*y*cos(x)*DiracDelta(x - 1)/2 + x*y*cos(x)*DiracDelta(x + 1)/2)
       >>> change_mul(x*y*DiracDelta(cos(x))*cos(x), x)
       (None, None)

       See Also
       ========

       sympy.functions.special.delta_functions.DiracDelta
       deltaintegrate
    N)keyr   T
diracdeltawrt)args_cncsortedr   extendis_Pow
isinstancebaser   appendfuncexp	is_simpleexpandr   )	nodexnew_argsdiraccncsorted_argsargnnodes	            c/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/integrals/deltafunctions.py
change_mulr%      s   N HE MMOEAr 01Kr !::*SXXz:OOCHHSXXsww{;<((C=jj9cmmA>NEOOC !  	%C#z*

d
 BC
388Z @Da)PRURYRY Z[$	% {"N))+E e} Ee}3>""    c                    | j                  t              sy| j                  t        k(  r| j                  d|      }|| k(  r| j	                  |      rt        | j                        dk  s| j                  d   dk(  rt        | j                  d         S t        | j                  d   | j                  d   dz
        | j                  d   j                         j                         z  S t        ||      }|S y| j                  s| j                  re| j                         }| |k7  r!t        ||      }|t        |t              s|S yt        | |      \  }}|s|rt        ||      }|S yddlm} |j                  d|      }|j                  rt        ||      \  }}||z  } ||j                  d   |      d   }	t        |j                        dk(  rdn|j                  d   }
d}|
dk\  r{t$        j&                  |
z  |j)                  ||
      j+                  ||	      z  }|j,                  r|
dz  }
|dz  }n(|dk(  r|t        ||	z
        z  S |t        ||dz
        z  S |
dk\  r{t$        j.                  S y)a  
    deltaintegrate(f, x)

    Explanation
    ===========

    The idea for integration is the following:

    - If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)),
      we try to simplify it.

      If we could simplify it, then we integrate the resulting expression.
      We already know we can integrate a simplified expression, because only
      simple DiracDelta expressions are involved.

      If we couldn't simplify it, there are two cases:

      1) The expression is a simple expression: we return the integral,
         taking care if we are dealing with a Derivative or with a proper
         DiracDelta.

      2) The expression is not simple (i.e. DiracDelta(cos(x))): we can do
         nothing at all.

    - If the node is a multiplication node having a DiracDelta term:

      First we expand it.

      If the expansion did work, then we try to integrate the expansion.

      If not, we try to extract a simple DiracDelta term, then we have two
      cases:

      1) We have a simple DiracDelta term, so we return the integral.

      2) We didn't have a simple term, but we do have an expression with
         simplified DiracDelta terms, so we integrate this expression.

    Examples
    ========

        >>> from sympy.abc import x, y, z
        >>> from sympy.integrals.deltafunctions import deltaintegrate
        >>> from sympy import sin, cos, DiracDelta
        >>> deltaintegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x)
        sin(1)*cos(1)*Heaviside(x - 1)
        >>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)
        z**2*DiracDelta(x - z)*Heaviside(y - z)

    See Also
    ========

    sympy.functions.special.delta_functions.DiracDelta
    sympy.integrals.integrals.Integral
    NTr   r   r   )solve)hasr   r   r   r   lenargsr   as_polyLCr
   is_Mulr   r   r	   r%   sympy.solversr(   r   NegativeOnediffsubsis_zeroZero)fr   hfhg	deltaterm	rest_multr(   rest_mult_2pointnmrs                r$   deltaintegrater@   Q   s_   p 55 	vvHH!H,6 {{1~K1$q	Q$QVVAY//&qvvay!&&)a-@q	))+..01 2 1aBI^ ] 
QXXHHJ61aB~jX&>	R M $.a#3 Iy"9a0BIB ? 0%,,!,D	##-7	1-E*I{ )+ 5IinnQ/3A6 inn-q0QinnQ6G1fq(1)=)B)B1e)LLAyyQQ6#$Yq5y%9#99#$Z!A#%6#66 1f vvr&   N)sympy.core.mulr   sympy.core.singletonr   sympy.core.sortingr   sympy.functionsr   r   	integralsr	   r
   r%   r@    r&   r$   <module>rG      s!     " / 1 *F#Rxr&   