
    wgX,                     T    d dl mZ d dlmZ d dlmZ  G d de      Z G d de      Zy)	    )ExprWithLimits)S)Eqc                   "     e Zd ZdZ fdZ xZS )ReorderErrorzC
    Exception raised when trying to reorder dependent limits.
    c                 0    t         |   |d|d       y )Nz could not be reordered: .)super__init__)selfexprmsg	__class__s      g/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/concrete/expr_with_intlimits.pyr   zReorderError.__init__	   s    04c:	<    )__name__
__module____qualname____doc__r   __classcell__)r   s   @r   r   r      s    < <r   r   c                   >    e Zd ZdZdZd	dZd Zd Zd Ze	d        Z
y)
ExprWithIntLimitsz
    Superclass for Product and Sum.

    See Also
    ========

    sympy.concrete.expr_with_limits.ExprWithLimits
    sympy.concrete.products.Product
    sympy.concrete.summations.Sum
     Nc                    ||}g }| j                   D ]/  }|d   |k(  r|j                  |      }|j                         dk7  rt        d      |j	                  |      }|j	                  t
        j                        }|j                  r|t
        j                  k(  r'|j                  |||d   z  |z   ||d   z  |z   f       |t
        j                  k(  r'|j                  |||d   z  |z   ||d   z  |z   f       t        d      |j                  |||d   z  |z   ||d   z  |z   f       |j                  |       2 | j                  j                  ||z
  z        }	|	j                  ||      }	 | j                  |	g| S )a  
        Change index of a Sum or Product.

        Perform a linear transformation `x \mapsto a x + b` on the index variable
        `x`. For `a` the only values allowed are `\pm 1`. A new variable to be used
        after the change of index can also be specified.

        Explanation
        ===========

        ``change_index(expr, var, trafo, newvar=None)`` where ``var`` specifies the
        index variable `x` to transform. The transformation ``trafo`` must be linear
        and given in terms of ``var``. If the optional argument ``newvar`` is
        provided then ``var`` gets replaced by ``newvar`` in the final expression.

        Examples
        ========

        >>> from sympy import Sum, Product, simplify
        >>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l

        >>> S = Sum(x, (x, a, b))
        >>> S.doit()
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, x + 1, y)
        >>> Sn
        Sum(y - 1, (y, a + 1, b + 1))
        >>> Sn.doit()
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, -x, y)
        >>> Sn
        Sum(-y, (y, -b, -a))
        >>> Sn.doit()
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, x+u)
        >>> Sn
        Sum(-u + x, (x, a + u, b + u))
        >>> Sn.doit()
        -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
        >>> simplify(Sn.doit())
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> Sn = S.change_index(x, -x - u, y)
        >>> Sn
        Sum(-u - y, (y, -b - u, -a - u))
        >>> Sn.doit()
        -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
        >>> simplify(Sn.doit())
        -a**2/2 + a/2 + b**2/2 + b/2

        >>> P = Product(i*j**2, (i, a, b), (j, c, d))
        >>> P
        Product(i*j**2, (i, a, b), (j, c, d))
        >>> P2 = P.change_index(i, i+3, k)
        >>> P2
        Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d))
        >>> P3 = P2.change_index(j, -j, l)
        >>> P3
        Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c))

        When dealing with symbols only, we can make a
        general linear transformation:

        >>> Sn = S.change_index(x, u*x+v, y)
        >>> Sn
        Sum((-v + y)/u, (y, b*u + v, a*u + v))
        >>> Sn.doit()
        -v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - b*u*v + b*u/2 + v)/u
        >>> simplify(Sn.doit())
        a**2*u/2 + a/2 - b**2*u/2 + b/2

        However, the last result can be inconsistent with usual
        summation where the index increment is always 1. This is
        obvious as we get back the original value only for ``u``
        equal +1 or -1.

        See Also
        ========

        sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
        reorder_limit,
        sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder,
        sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        r      z"Index transformation is not linear   z>Linear transformation results in non-linear summation stepsize)limitsas_polydegree
ValueErrorcoeff_monomialr   One	is_numberappendNegativeOnefunctionsubsfunc)
r   vartrafonewvarr   limitpalphabetar&   s
             r   change_indexzExprWithIntLimits.change_index   s   r >F[[ 	%EQx3MM#&88:?$%IJJ((-''.??~vuU1X~/DeERSHnW[F[&\]!--/vuU1X~/DeERSHnW[F[&\]()ijj MM65q>D+@%a.SWBW"XYe$%	%( ==%%cC$J+=>==f-tyy+F++r   c                     | j                   D cg c]  }|d   	 }}|j                  |      dk7  rt        | d      |j                  |      S c c}w )aX  
        Return the index of a dummy variable in the list of limits.

        Explanation
        ===========

        ``index(expr, x)``  returns the index of the dummy variable ``x`` in the
        limits of ``expr``. Note that we start counting with 0 at the inner-most
        limits tuple.

        Examples
        ========

        >>> from sympy.abc import x, y, a, b, c, d
        >>> from sympy import Sum, Product
        >>> Sum(x*y, (x, a, b), (y, c, d)).index(x)
        0
        >>> Sum(x*y, (x, a, b), (y, c, d)).index(y)
        1
        >>> Product(x*y, (x, a, b), (y, c, d)).index(x)
        0
        >>> Product(x*y, (x, a, b), (y, c, d)).index(y)
        1

        See Also
        ========

        reorder_limit, reorder, sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        r   r   z0Number of instances of variable not equal to one)r   countr    index)r   xr,   	variabless       r   r3   zExprWithIntLimits.index   sR    > ,0;;7%U1X7	7??1"T#UVV??1%% 8s   Ac                     | }|D ]  }t        |      dk7  rt        |d      |d   }|d   }t        |d   t              s| j	                  |d         }t        |d   t              s| j	                  |d         }|j                  ||      } |S )a  
        Reorder limits in a expression containing a Sum or a Product.

        Explanation
        ===========

        ``expr.reorder(*arg)`` reorders the limits in the expression ``expr``
        according to the list of tuples given by ``arg``. These tuples can
        contain numerical indices or index variable names or involve both.

        Examples
        ========

        >>> from sympy import Sum, Product
        >>> from sympy.abc import x, y, z, a, b, c, d, e, f

        >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y))
        Sum(x*y, (y, c, d), (x, a, b))

        >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z))
        Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))

        >>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f))
        >>> P.reorder((x, y), (x, z), (y, z))
        Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))

        We can also select the index variables by counting them, starting
        with the inner-most one:

        >>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1))
        Sum(x**2, (x, c, d), (x, a, b))

        And of course we can mix both schemes:

        >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x))
        Sum(x*y, (y, c, d), (x, a, b))
        >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0))
        Sum(x*y, (y, c, d), (x, a, b))

        See Also
        ========

        reorder_limit, index, sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        r   zInvalid number of argumentsr   r   )lenr    
isinstanceintr3   reorder_limit)r   argnew_exprrindex1index2s         r   reorderzExprWithIntLimits.reorder   s    \  	>A1v{ $ABBqTFqTFadC(AaD)adC(AaD)--ff=H	> r   c                 &   | j                   D ch c]  }|d   	 }}| j                   |   }| j                   |   }t        t        |d   j                        j	                  |            dk(  rt        t        |d   j                        j	                  |            dk(  rt        t        |d   j                        j	                  |            dk(  rt        t        |d   j                        j	                  |            dk(  rzg }t        | j                         D ]D  \  }}||k(  r|j                  |       ||k(  r|j                  |       4|j                  |       F  t        |       | j                  g| S t        | d      c c}w )a-  
        Interchange two limit tuples of a Sum or Product expression.

        Explanation
        ===========

        ``expr.reorder_limit(x, y)`` interchanges two limit tuples. The
        arguments ``x`` and ``y`` are integers corresponding to the index
        variables of the two limits which are to be interchanged. The
        expression ``expr`` has to be either a Sum or a Product.

        Examples
        ========

        >>> from sympy.abc import x, y, z, a, b, c, d, e, f
        >>> from sympy import Sum, Product

        >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
        Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
        >>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0)
        Sum(x**2, (x, c, d), (x, a, b))

        >>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
        Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))

        See Also
        ========

        index, reorder, sympy.concrete.summations.Sum.reverse_order,
        sympy.concrete.products.Product.reverse_order
        r   r   r   z.could not interchange the two limits specified)
r   r7   setfree_symbolsintersection	enumerater$   typer&   r   )	r   r4   yr,   r)   limit_xlimit_yr   is	            r   r:   zExprWithIntLimits.reorder_limit   sX   @ &*[[1EuQx11++a.++a.GAJ++,99#>?1DGAJ++,99#>?1DGAJ++,99#>?1DGAJ++,99#>?1DF%dkk2 )56MM'*!VMM'*MM%() 4:dmm5f55t%UVV) 2s   Fc                 |    d}| j                   D ](  }|d   |d   z
  }t        |d      }|dk(  r y|dk(  r'd}* |ryy)a  
        Returns True if the Sum or Product is computed for an empty sequence.

        Examples
        ========

        >>> from sympy import Sum, Product, Symbol
        >>> m = Symbol('m')
        >>> Sum(m, (m, 1, 0)).has_empty_sequence
        True

        >>> Sum(m, (m, 1, 1)).has_empty_sequence
        False

        >>> M = Symbol('M', integer=True, positive=True)
        >>> Product(m, (m, 1, M)).has_empty_sequence
        False

        >>> Product(m, (m, 2, M)).has_empty_sequence

        >>> Product(m, (m, M + 1, M)).has_empty_sequence
        True

        >>> N = Symbol('N', integer=True, positive=True)
        >>> Sum(m, (m, N, M)).has_empty_sequence

        >>> N = Symbol('N', integer=True, negative=True)
        >>> Sum(m, (m, N, M)).has_empty_sequence
        False

        See Also
        ========

        has_reversed_limits
        has_finite_limits

        Fr   r   TN)r   r   )r   ret_Nonelimdifeqs        r   has_empty_sequencez$ExprWithIntLimits.has_empty_sequence.  s]    N ;; 	 Ca&3q6/CCBTzu	  r   )N)r   r   r   r   	__slots__r0   r3   r@   r:   propertyrP   r   r   r   r   r      s<    	 It,n$&L>B4Wl 3 3r   r   N)	sympy.concrete.expr_with_limitsr   sympy.core.singletonr   sympy.core.relationalr   NotImplementedErrorr   r   r   r   r   <module>rW      s)    : " $<& <U Ur   