
    wggS                     `    d dl mZ d dlmZ d dlmZ d dlmZ  G d de      Z G d de      Z	y	)
    isprime)PermutationGroup)DefaultPrinting)
free_groupc                   (    e Zd ZdZdZddZd Zd Zy)PolycyclicGroupTNc                 z    || _         || _        || _        |st        | j                   ||      | _        y|| _        y)a  

        Parameters
        ==========

        pc_sequence : list
            A sequence of elements whose classes generate the cyclic factor
            groups of pc_series.
        pc_series : list
            A subnormal sequence of subgroups where each factor group is cyclic.
        relative_order : list
            The orders of factor groups of pc_series.
        collector : Collector
            By default, it is None. Collector class provides the
            polycyclic presentation with various other functionalities.

        N)pcgs	pc_seriesrelative_order	Collector	collector)selfpc_sequencer   r   r   s        b/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/combinatorics/pc_groups.py__init__zPolycyclicGroup.__init__   s7    $  	",PY499iH_h    c                 :    t        d | j                  D              S )Nc              3   2   K   | ]  }t        |        y wNr   ).0orders     r   	<genexpr>z1PolycyclicGroup.is_prime_order.<locals>.<genexpr>$   s     Ce75>Cs   )allr   r   s    r   is_prime_orderzPolycyclicGroup.is_prime_order#   s    Ct/B/BCCCr   c                 ,    t        | j                        S r   )lenr   r   s    r   lengthzPolycyclicGroup.length&   s    499~r   r   )__name__
__module____qualname__is_groupis_solvabler   r   r     r   r   r	   r	      s    HKi.Dr   r	   c                   `    e Zd ZdZddZd Zd Zd Zd Zd Z	d	 Z
d
 Zd Zd Zd Zd Zd Zy)r   z
    References
    ==========

    .. [1] Holt, D., Eick, B., O'Brien, E.
           "Handbook of Computational Group Theory"
           Section 8.1.3
    Nc                 2   || _         || _        || _        |s&t        dj	                  t        |                  d   n|| _        t        | j                  j                        D ci c]  \  }}||
 c}}| _        | j                         | _
        yc c}}w )a  

        Most of the parameters for the Collector class are the same as for PolycyclicGroup.
        Others are described below.

        Parameters
        ==========

        free_group_ : tuple
            free_group_ provides the mapping of polycyclic generating
            sequence with the free group elements.
        pc_presentation : dict
            Provides the presentation of polycyclic groups with the
            help of power and conjugate relators.

        See Also
        ========

        PolycyclicGroup

        zx:{}r   N)r   r   r   r   formatr   	enumeratesymbolsindexpc_relatorspc_presentation)r   r   r   r   free_group_r.   iss           r   r   zCollector.__init__5   s}    , 	",IT*V]]3t9%=>qAZe'01H1H'IJtq!adJ
#//1 Ks   'Bc                 t   |sy|j                   }| j                  }| j                  }t        t	        |            D ]-  }||   \  }}|||      s|dk  s||||      dz
  kD  s(||ffc S  t        t	        |      dz
        D ]3  }||   \  }}||dz      \  }}	||   ||   kD  s"|	dkD  rdnd}
||f||
ffc S  y)a  
        Returns the minimal uncollected subwords.

        Explanation
        ===========

        A word ``v`` defined on generators in ``X`` is a minimal
        uncollected subword of the word ``w`` if ``v`` is a subword
        of ``w`` and it has one of the following form

        * `v = {x_{i+1}}^{a_j}x_i`

        * `v = {x_{i+1}}^{a_j}{x_i}^{-1}`

        * `v = {x_i}^{a_j}`

        for `a_j` not in `\{1, \ldots, s-1\}`. Where, ``s`` is the power
        exponent of the corresponding generator.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics import free_group
        >>> G = SymmetricGroup(4)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> F, x1, x2 = free_group("x1, x2")
        >>> word = x2**2*x1**7
        >>> collector.minimal_uncollected_subword(word)
        ((x2, 2),)

        Nr      )
array_formr   r,   ranger   )r   wordarrayrer,   r0   s1e1s2e2es              r   minimal_uncollected_subwordz%Collector.minimal_uncollected_subwordR   s    F   

s5z" 	$A1XFB%)}"q&BE"Iq,@R|#		$ s5z!|$ 	+A1XFB1Q3ZFBRy59$aARR2q'**	+ r   c                     i }i }| j                   j                         D ](  \  }}t        |j                        dk(  r|||<   $|||<   * ||fS )a  
        Separates the given relators of pc presentation in power and
        conjugate relations.

        Returns
        =======

        (power_rel, conj_rel)
            Separates pc presentation into power and conjugate relations.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> G = SymmetricGroup(3)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> power_rel, conj_rel = collector.relations()
        >>> power_rel
        {x0**2: (), x1**3: ()}
        >>> conj_rel
        {x0**-1*x1*x0: x1**2}

        See Also
        ========

        pc_relators

        r3   )r.   itemsr   r5   )r   power_relatorsconjugate_relatorskeyvalues        r   	relationszCollector.relations   se    < ..446 	0JC3>>"a'&+s#*/"3'		0
 111r   c                     d}d}t        t        |      t        |      z
  dz         D ]5  }|j                  ||t        |      z         |k(  s%|}|t        |      z   } n ||cxk(  rdk(  ry ||fS ||fS )a  
        Returns the start and ending index of a given
        subword in a word.

        Parameters
        ==========

        word : FreeGroupElement
            word defined on free group elements for a
            polycyclic group.
        w : FreeGroupElement
            subword of a given word, whose starting and
            ending index to be computed.

        Returns
        =======

        (i, j)
            A tuple containing starting and ending index of ``w``
            in the given word.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics import free_group
        >>> G = SymmetricGroup(4)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> F, x1, x2 = free_group("x1, x2")
        >>> word = x2**2*x1**7
        >>> w = x2**2*x1
        >>> collector.subword_index(word, w)
        (0, 3)
        >>> w = x1**7
        >>> collector.subword_index(word, w)
        (2, 9)

        r4   r3   )r4   r4   )r6   r   subword)r   r7   wlowhighr0   s         r   subword_indexzCollector.subword_index   s    P s4yQ')* 	A||AqQx(A-Qx		
 $" DysDyr   c                     |j                   }|d   d   }|d   d   }|df|df|dff}| j                  j                  |      }| j                  |   S )a  
        Return a conjugate relation.

        Explanation
        ===========

        Given a word formed by two free group elements, the
        corresponding conjugate relation with those free
        group elements is formed and mapped with the collected
        word in the polycyclic presentation.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics import free_group
        >>> G = SymmetricGroup(3)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> F, x0, x1 = free_group("x0, x1")
        >>> w = x1*x0
        >>> collector.map_relation(w)
        x1**2

        See Also
        ========

        pc_presentation

        r   r3   r4   )r5   r   dtyper.   )r   rI   r8   r:   r<   rD   s         r   map_relationzCollector.map_relation   sd    > 1Xa[1Xa[Bx"a2q'*oo##C(##C((r   c                    | j                   }	 | j                  |      }|s	 |S | j                  | |j                  |            \  }}|dk(  rB|d   \  }}t	        |      dk(  r| j
                  | j                  |      }||z  }	||	|z  z
  }
|d   d   |ff} |j                  |      }| j                  |   rE| j                  |   j                  }|d   \  }}|d   d   |
f||	|z  ff} |j                  |      }n%|
dk7  r|d   d   |
ff} |j                  |      }nd}|j                   |j                  |      |      }t	        |      dk(  ry|d   d   dkD  rn|d   \  }}|dff} |j                  |      }| j                   |j                  |            }|||z  z  } |j                  |      }|j                  |||      }nt	        |      dk(  r{|d   d   dk  rp|d   \  }}|dff} |j                  |      }| j                   |j                  |            }|dz  ||z  z  } |j                  |      }|j                  |||      }J)a  
        Return the collected form of a word.

        Explanation
        ===========

        A word ``w`` is called collected, if `w = {x_{i_1}}^{a_1} * \ldots *
        {x_{i_r}}^{a_r}` with `i_1 < i_2< \ldots < i_r` and `a_j` is in
        `\{1, \ldots, {s_j}-1\}`.

        Otherwise w is uncollected.

        Parameters
        ==========

        word : FreeGroupElement
            An uncollected word.

        Returns
        =======

        word
            A collected word of form `w = {x_{i_1}}^{a_1}, \ldots,
            {x_{i_r}}^{a_r}` with `i_1, i_2, \ldots, i_r` and `a_j \in
            \{1, \ldots, {s_j}-1\}`.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics.perm_groups import PermutationGroup
        >>> from sympy.combinatorics import free_group
        >>> G = SymmetricGroup(4)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> F, x0, x1, x2, x3 = free_group("x0, x1, x2, x3")
        >>> word = x3*x2*x1*x0
        >>> collected_word = collector.collected_word(word)
        >>> free_to_perm = {}
        >>> free_group = collector.free_group
        >>> for sym, gen in zip(free_group.symbols, collector.pcgs):
        ...     free_to_perm[sym] = gen
        >>> G1 = PermutationGroup()
        >>> for w in word:
        ...     sym = w[0]
        ...     perm = free_to_perm[sym]
        ...     G1 = PermutationGroup([perm] + G1.generators)
        >>> G2 = PermutationGroup()
        >>> for w in collected_word:
        ...     sym = w[0]
        ...     perm = free_to_perm[sym]
        ...     G2 = PermutationGroup([perm] + G2.generators)

        The two are not identical, but they are equivalent:

        >>> G1.equals(G2), G1 == G2
        (True, False)

        See Also
        ========

        minimal_uncollected_subword

        r4   r   r3   N   )r   r?   rL   rN   r   r   r,   r.   r5   eliminate_wordrO   substituted_word)r   r7   r   rI   rJ   rK   r:   r;   r9   qrrD   presentationsymexpword_r<   r=   s                     r   collected_wordzCollector.collected_word  s   B __
006AZ W **41A1A1A!1DEICbyqTFB1v{((B8"HqtG!Q}'&j&&s+'',#'#7#7#<#G#GL+AHCd1gq\C3<8E,J,,U3EAv"#A$q'1 0 0
 0 0 7 $**+;:+;+;A+>F1v{qtAw{1B1g[%Z%%b)))*:**:*:1*=>5"9(
((/,,S$>Q11a11B1g[%Z%%b)))*:**:*:1*=>Buby((
((/,,S$>] r   c                    | j                   }| j                  }i }i }| j                  }t        ||j                        D ]  \  }}|dz  ||dz  <   |||<    |ddd   }| j
                  ddd   }|ddd   }g }	t        |      D ]L  \  }
}||
   }||   |z  }||
   }|j                  ||z  d      }|j                          |j                  }|D ]
  }|||   z  } | j                  |      }|r|nd||<   || _        |	j                  |       t        |	      dkD  s|	t        |	      dz
     }||   }t        t        |	      dz
        D ]  }||	|      }|dz  |z  |z  }|dz  |	|   z  |z  }|j                  |d      }|j                          |j                  }|D ]
  }|||   z  } | j                  |      }|r|nd||<   || _         O |S )aM  
        Return the polycyclic presentation.

        Explanation
        ===========

        There are two types of relations used in polycyclic
        presentation.

        * Power relations : Power relators are of the form `x_i^{re_i}`,
          where `i \in \{0, \ldots, \mathrm{len(pcgs)}\}`, ``x`` represents polycyclic
          generator and ``re`` is the corresponding relative order.

        * Conjugate relations : Conjugate relators are of the form `x_j^-1x_ix_j`,
          where `j < i \in \{0, \ldots, \mathrm{len(pcgs)}\}`.

        Returns
        =======

        A dictionary with power and conjugate relations as key and
        their collected form as corresponding values.

        Notes
        =====

        Identity Permutation is mapped with empty ``()``.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics.permutations import Permutation
        >>> S = SymmetricGroup(49).sylow_subgroup(7)
        >>> der = S.derived_series()
        >>> G = der[len(der)-2]
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> pcgs = PcGroup.pcgs
        >>> len(pcgs)
        6
        >>> free_group = collector.free_group
        >>> pc_resentation = collector.pc_presentation
        >>> free_to_perm = {}
        >>> for s, g in zip(free_group.symbols, pcgs):
        ...     free_to_perm[s] = g

        >>> for k, v in pc_resentation.items():
        ...     k_array = k.array_form
        ...     if v != ():
        ...        v_array = v.array_form
        ...     lhs = Permutation()
        ...     for gen in k_array:
        ...         s = gen[0]
        ...         e = gen[1]
        ...         lhs = lhs*free_to_perm[s]**e
        ...     if v == ():
        ...         assert lhs.is_identity
        ...         continue
        ...     rhs = Permutation()
        ...     for gen in v_array:
        ...         s = gen[0]
        ...         e = gen[1]
        ...         rhs = rhs*free_to_perm[s]**e
        ...     assert lhs == rhs

        r4   NToriginalr&   r3   )r   r   r   zip
generatorsr   r*   generator_productreverseidentityrZ   r.   appendr   r6   )r   r   	rel_orderr-   perm_to_freer   genr1   seriescollected_gensr0   r9   relationGlr7   gconj
conjugatorj
conjugatedgenss                         r   r-   zCollector.pc_relators  sM   F __
''	yy$
 5 56 	"FC$%rELb! !L	" DbDz"%ddO	o #	7FAs1B#C(",Hq	A##CG#=AIIK&&D ,LO+, &&t,D,0DbK!#.D !!#&>"Q&%c.&9!&;<)$/
s>2145 7A!-nQ.?!@J)2~j8CH8N1$55d:D++DT+BAIIK%..D 4#LO34  ..t4D48DbK)+6D(7+#	7J r   c                    | j                   }t               }| j                  D ]  }t        |g|j                  z         } |j	                  |d      }|j                          i }t        |j                  | j                        D ]  \  }}|dz  ||dz  <   |||<    |j                  }|D ]
  }|||   z  } | j                  |      }	| j                  }
dgt        |      z  }|	j                  }	|	D ]  }|d   ||
|d      <    |S )aJ  
        Return the exponent vector of length equal to the
        length of polycyclic generating sequence.

        Explanation
        ===========

        For a given generator/element ``g`` of the polycyclic group,
        it can be represented as `g = {x_1}^{e_1}, \ldots, {x_n}^{e_n}`,
        where `x_i` represents polycyclic generators and ``n`` is
        the number of generators in the free_group equal to the length
        of pcgs.

        Parameters
        ==========

        element : Permutation
            Generator of a polycyclic group.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics.permutations import Permutation
        >>> G = SymmetricGroup(4)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> pcgs = PcGroup.pcgs
        >>> collector.exponent_vector(G[0])
        [1, 0, 0, 0]
        >>> exp = collector.exponent_vector(G[1])
        >>> g = Permutation()
        >>> for i in range(len(exp)):
        ...     g = g*pcgs[i]**exp[i] if exp[i] else g
        >>> assert g == G[1]

        References
        ==========

        .. [1] Holt, D., Eick, B., O'Brien, E.
               "Handbook of Computational Group Theory"
               Section 8.1.1, Definition 8.4

        Tr\   r4   r   r3   )r   r   r   r_   r`   ra   r^   rb   rZ   r,   r   r5   )r   elementr   rj   rl   rq   re   rW   rI   r7   r,   
exp_vectorts                r   exponent_vectorzCollector.exponent_vector  s)   Z __
 	5A !q||!34A	5""7t"<*//; 	"FC"%r'LB!LO	"  	"A,q/!A	" ""1%

SZ(
 	+A&'dJuQqT{#	+r   c                     | j                  |      }t        d t        |      D        t        | j                        dz         S )a  
        Return the depth of a given element.

        Explanation
        ===========

        The depth of a given element ``g`` is defined by
        `\mathrm{dep}[g] = i` if `e_1 = e_2 = \ldots = e_{i-1} = 0`
        and `e_i != 0`, where ``e`` represents the exponent-vector.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> G = SymmetricGroup(3)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> collector.depth(G[0])
        2
        >>> collector.depth(G[1])
        1

        References
        ==========

        .. [1] Holt, D., Eick, B., O'Brien, E.
               "Handbook of Computational Group Theory"
               Section 8.1.1, Definition 8.5

        c              3   2   K   | ]  \  }}|s	|d z     yw)r3   Nr&   )r   r0   xs      r   r   z"Collector.depth.<locals>.<genexpr>`  s     @TQaQqS@s   

r3   )rv   nextr*   r   r   )r   rs   rt   s      r   depthzCollector.depth@  s:    > ))'2
@Yz%:@#dii.QRBRSSr   c                     | j                  |      }| j                  |      }|t        | j                        dz   k7  r||dz
     S y)a  
        Return the leading non-zero exponent.

        Explanation
        ===========

        The leading exponent for a given element `g` is defined
        by `\mathrm{leading\_exponent}[g]` `= e_i`, if `\mathrm{depth}[g] = i`.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> G = SymmetricGroup(3)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> collector.leading_exponent(G[1])
        1

        r3   N)rv   r{   r   r   )r   rs   rt   r{   s       r   leading_exponentzCollector.leading_exponentb  sI    * ))'2


7#C		N1$$eAg&&r   c                 t   |}| j                  |      }|t        | j                        k  r||dz
     dk7  r||dz
     }| j                  |      | j                  |      dz  z  }|| j                  |dz
     z  }|| z  |z  }| j                  |      }|t        | j                        k  r||dz
     dk7  r|S )Nr3   r4   )r{   r   r   r}   r   )r   zrl   hdkr>   s          r   _siftzCollector._sift}  s    JJqM#dii. QqsVq[!A#A%%a($*?*?*BR)GGAD''!,,AA2aA

1A #dii. QqsVq[ r   c                 |   dgt        | j                        z  }|}|r|j                  d      }| j                  ||      }| j	                  |      }|t        | j                        k  r5|D ](  }|dk7  s	|j                  |dz  |dz  z  |z  |z         * |||dz
  <   |r|D cg c]
  }|dk7  s	| }}|S c c}w )a8  

        Parameters
        ==========

        gens : list
            A list of generators on which polycyclic subgroup
            is to be defined.

        Examples
        ========

        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> S = SymmetricGroup(8)
        >>> G = S.sylow_subgroup(2)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> gens = [G[0], G[1]]
        >>> ipcgs = collector.induced_pcgs(gens)
        >>> [gen.order() for gen in ipcgs]
        [2, 2, 2]
        >>> G = S.sylow_subgroup(3)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> gens = [G[0], G[1]]
        >>> ipcgs = collector.induced_pcgs(gens)
        >>> [gen.order() for gen in ipcgs]
        [3]

        r3   r   r4   )r   r   popr   r{   rc   )r   rq   r   rj   rl   r   r   rf   s           r   induced_pcgszCollector.induced_pcgs  s    > CDIIaA

1a A

1A3tyy>! 6CaxBsBwq!456 !A#  *SS** +s   &
B91B9c                 ~   dgt        |      z  }|}| j                  |      }t        |      D ]  \  }}| j                  |      |k(  s| j                  |      | j                  |      z  }|| j                  |dz
     z  }|| z  |z  }|||<   | j                  |      }| j                  |      |k(  rl |dk(  r|S y)z>
        Return the exponent vector for induced pcgs.
        r   r3   F)r   r{   r*   r}   r   )	r   ipcgsrl   r>   r   r   r0   rf   fs	            r   constructive_membership_testz&Collector.constructive_membership_test  s     CE
NJJqM& 	"FAs**S/Q&))!,T-B-B3-GG++AaC001"IaK!JJqM **S/Q&	" 6Hr   )NN)r!   r"   r#   __doc__r   r?   rF   rL   rO   rZ   r-   rv   r{   r}   r   r   r   r&   r   r   r   r   *   sU    2:8t%2N1f$)NrjwrCJ TD6	+Zr   r   N)
sympy.ntheory.primetestr   sympy.combinatorics.perm_groupsr   sympy.printing.defaultsr   sympy.combinatorics.free_groupsr   r	   r   r&   r   r   <module>r      s,    + < 3 6 o  F[
 [
r   