
    wg                     
   d dl mZ d dlmZ d dlmZ d dlmZmZm	Z	m
Z
 d dlmZmZ d dlmZ d dlmZmZmZ d dlmZmZ d d	lmZ d d
lmZ d dlmZ d dlmZm Z  d dl!m"Z" d dl#m$Z$m%Z% d dl&m'Z' d dl(m)Z) d Z*d Z+ G d de"      Z,y)    )Rational)S)is_eq)	conjugateimresign)explog)sqrt)acosasinatan2)cossin)trigsimp	integrate)MutableDenseMatrix)sympify_sympify)Expr)	fuzzy_notfuzzy_or)as_int)prec_to_dpsc                     |h|j                   r[|j                  du rt        d      t        d | D              }|r-t	        |dz  t        d | D                    du rt        d      yyyy)z$validate if input norm is consistentNFzInput norm must be positive.c              3   T   K   | ]   }|j                   xr |j                  d u  " yw)TN)	is_numberis_real.0is     ^/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/sympy/algebras/quaternion.py	<genexpr>z_check_norm.<locals>.<genexpr>   s%     La9		T(99Ls   &(   c              3   &   K   | ]	  }|d z    yw)r&   N r!   s     r$   r%   z_check_norm.<locals>.<genexpr>   s     +CQAqD+Cs   zIncompatible value for norm.)r   is_positive
ValueErrorallr   sum)elementsnorm	numericals      r$   _check_normr0      st    DNNu$;<<L8LL	tQw+C(+C(CDM;<< N9 +    c                    t        |       t        k7  rt        d      t        |       dk7  rt        dj	                  |             | j                         }| j                         }|s|st        d      | j                         \  }}}||k(  s||k(  rt        d      t        |       t        d      z
  }|r)t        dj	                  dj                  |                  |S )	zGvalidate seq and return True if seq is lowercase and False if uppercasezExpected seq to be a string.   zExpected 3 axes, got `{}`.zkseq must either be fully uppercase (for extrinsic rotations), or fully lowercase, for intrinsic rotations).z"Consecutive axes must be differentxyzXYZzNExpected axes from `seq` to be from ['x', 'y', 'z'] or ['X', 'Y', 'Z'], got {} )
typestrr*   lenformatisupperislowerlowersetjoin)seq	intrinsic	extrinsicr#   jkbads          r$   _is_extrinsicrE      s    CyC788
3x1}5<<SABBII ' ( 	( iikGAq!	QAF=>>
c(S]
"C
 ""(&"68 	8 r1   c                       e Zd ZdZdZdZd; fd	Zd Zed        Z	ed        Z
ed        Zed	        Zed
        Zed        Zed        Zd<dZed        Zed        Zd=dZed        Zed        Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Z d Z!d Z"d Z#e$d         Z%d! Z&d" Z'd# Z(d$ Z)d% Z*d& Z+d' Z,d( Z-d) Z.d* Z/d+ Z0e$d,        Z1d- Z2d>d.Z3d/ Z4d0 Z5d1 Z6d2 Z7d3 Z8d4 Z9d5 Z:ed6        Z;d7 Z<d8 Z=d9 Z>d: Z? xZ@S )?
Quaterniona  Provides basic quaternion operations.
    Quaternion objects can be instantiated as ``Quaternion(a, b, c, d)``
    as in $q = a + bi + cj + dk$.

    Parameters
    ==========

    norm : None or number
        Pre-defined quaternion norm. If a value is given, Quaternion.norm
        returns this pre-defined value instead of calculating the norm

    Examples
    ========

    >>> from sympy import Quaternion
    >>> q = Quaternion(1, 2, 3, 4)
    >>> q
    1 + 2*i + 3*j + 4*k

    Quaternions over complex fields can be defined as:

    >>> from sympy import Quaternion
    >>> from sympy import symbols, I
    >>> x = symbols('x')
    >>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
    >>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
    >>> q1
    x + x**3*i + x*j + x**2*k
    >>> q2
    (3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k

    Defining symbolic unit quaternions:

    >>> from sympy import Quaternion
    >>> from sympy.abc import w, x, y, z
    >>> q = Quaternion(w, x, y, z, norm=1)
    >>> q
    w + x*i + y*j + z*k
    >>> q.norm()
    1

    References
    ==========

    .. [1] https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
    .. [2] https://en.wikipedia.org/wiki/Quaternion

    g      &@Fc                     t        t        ||||f      \  }}}}t        d ||||fD              rt        d      t        |   | ||||      }||_        |j                  |       |S )Nc              3   8   K   | ]  }|j                   d u   yw)FN)is_commutativer!   s     r$   r%   z%Quaternion.__new__.<locals>.<genexpr>r   s     ?Qq5(?s   z arguments have to be commutative)mapr   anyr*   super__new___real_fieldset_norm)	clsabcd
real_fieldr.   obj	__class__s	           r$   rN   zQuaternion.__new__o   so    1aA,/
1a?1aA,???@@goc1aA.$T
r1   c                 T    t        |      }t        | j                  |       || _        y)a  Sets norm of an already instantiated quaternion.

        Parameters
        ==========

        norm : None or number
            Pre-defined quaternion norm. If a value is given, Quaternion.norm
            returns this pre-defined value instead of calculating the norm

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q = Quaternion(a, b, c, d)
        >>> q.norm()
        sqrt(a**2 + b**2 + c**2 + d**2)

        Setting the norm:

        >>> q.set_norm(1)
        >>> q.norm()
        1

        Removing set norm:

        >>> q.set_norm(None)
        >>> q.norm()
        sqrt(a**2 + b**2 + c**2 + d**2)

        N)r   r0   args_norm)selfr.   s     r$   rP   zQuaternion.set_normy   s#    @ t}DIIt$
r1   c                      | j                   d   S )Nr   rZ   r\   s    r$   rR   zQuaternion.a       yy|r1   c                      | j                   d   S )N   r^   r_   s    r$   rS   zQuaternion.b   r`   r1   c                      | j                   d   S )Nr&   r^   r_   s    r$   rT   zQuaternion.c   r`   r1   c                      | j                   d   S )Nr3   r^   r_   s    r$   rU   zQuaternion.d   r`   r1   c                     | j                   S N)rO   r_   s    r$   rV   zQuaternion.real_field   s    r1   c           	         t        | j                  | j                   | j                   | j                   g| j                  | j                  | j                   | j                  g| j                  | j                  | j                  | j                   g| j                  | j                   | j                  | j                  gg      S )a  Returns 4 x 4 Matrix equivalent to a Hamilton product from the
        left. This can be useful when treating quaternion elements as column
        vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
        are real numbers, the product matrix from the left is:

        .. math::

            M  =  \begin{bmatrix} a  &-b  &-c  &-d \\
                                  b  & a  &-d  & c \\
                                  c  & d  & a  &-b \\
                                  d  &-c  & b  & a \end{bmatrix}

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q1 = Quaternion(1, 0, 0, 1)
        >>> q2 = Quaternion(a, b, c, d)
        >>> q1.product_matrix_left
        Matrix([
        [1, 0,  0, -1],
        [0, 1, -1,  0],
        [0, 1,  1,  0],
        [1, 0,  0,  1]])

        >>> q1.product_matrix_left * q2.to_Matrix()
        Matrix([
        [a - d],
        [b - c],
        [b + c],
        [a + d]])

        This is equivalent to:

        >>> (q1 * q2).to_Matrix()
        Matrix([
        [a - d],
        [b - c],
        [b + c],
        [a + d]])
        MatrixrR   rS   rT   rU   r_   s    r$   product_matrix_leftzQuaternion.product_matrix_left   s    X $&&466'DFF73$&&$&&1$&&1$&&$&&$&&1	3 4 	4r1   c           	         t        | j                  | j                   | j                   | j                   g| j                  | j                  | j                  | j                   g| j                  | j                   | j                  | j                  g| j                  | j                  | j                   | j                  gg      S )aM  Returns 4 x 4 Matrix equivalent to a Hamilton product from the
        right. This can be useful when treating quaternion elements as column
        vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
        are real numbers, the product matrix from the left is:

        .. math::

            M  =  \begin{bmatrix} a  &-b  &-c  &-d \\
                                  b  & a  & d  &-c \\
                                  c  &-d  & a  & b \\
                                  d  & c  &-b  & a \end{bmatrix}


        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q1 = Quaternion(a, b, c, d)
        >>> q2 = Quaternion(1, 0, 0, 1)
        >>> q2.product_matrix_right
        Matrix([
        [1, 0, 0, -1],
        [0, 1, 1, 0],
        [0, -1, 1, 0],
        [1, 0, 0, 1]])

        Note the switched arguments: the matrix represents the quaternion on
        the right, but is still considered as a matrix multiplication from the
        left.

        >>> q2.product_matrix_right * q1.to_Matrix()
        Matrix([
        [ a - d],
        [ b + c],
        [-b + c],
        [ a + d]])

        This is equivalent to:

        >>> (q1 * q2).to_Matrix()
        Matrix([
        [ a - d],
        [ b + c],
        [-b + c],
        [ a + d]])
        rh   r_   s    r$   product_matrix_rightzQuaternion.product_matrix_right   s    b $&&466'DFF73$&&1$&&$&&$&&1$&&$&&1	3 4 	4r1   c                 `    |rt        | j                  dd       S t        | j                        S )a  Returns elements of quaternion as a column vector.
        By default, a ``Matrix`` of length 4 is returned, with the real part as the
        first element.
        If ``vector_only`` is ``True``, returns only imaginary part as a Matrix of
        length 3.

        Parameters
        ==========

        vector_only : bool
            If True, only imaginary part is returned.
            Default value: False

        Returns
        =======

        Matrix
            A column vector constructed by the elements of the quaternion.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q = Quaternion(a, b, c, d)
        >>> q
        a + b*i + c*j + d*k

        >>> q.to_Matrix()
        Matrix([
        [a],
        [b],
        [c],
        [d]])


        >>> q.to_Matrix(vector_only=True)
        Matrix([
        [b],
        [c],
        [d]])

        rb   N)ri   rZ   )r\   vector_onlys     r$   	to_MatrixzQuaternion.to_Matrix  s,    X $))AB-(($))$$r1   c                     t        |      }|dk7  r|dk7  rt        dj                  |            |dk(  rt        dg| S t        | S )a  Returns quaternion from elements of a column vector`.
        If vector_only is True, returns only imaginary part as a Matrix of
        length 3.

        Parameters
        ==========

        elements : Matrix, list or tuple of length 3 or 4. If length is 3,
            assume real part is zero.
            Default value: False

        Returns
        =======

        Quaternion
            A quaternion created from the input elements.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q = Quaternion.from_Matrix([a, b, c, d])
        >>> q
        a + b*i + c*j + d*k

        >>> q = Quaternion.from_Matrix([b, c, d])
        >>> q
        0 + b*i + c*j + d*k

        r3      z7Input elements must have length 3 or 4, got {} elementsr   )r8   r*   r9   rG   )rQ   r-   lengths      r$   from_MatrixzQuaternion.from_MatrixK  sZ    B XQ;6Q; ((.v8 8 Q;a+(++x((r1   c                    t        |      dk7  rt        d      t        |      }|j                         \  }}}dD cg c]  }||k(  rdnd }}dD cg c]  }||k(  rdnd }	}dD cg c]  }||k(  rdnd }
}| j	                  ||d         }| j	                  |	|d         }| j	                  |
|d         }|rt        ||z  |z        S t        ||z  |z        S c c}w c c}w c c}w )a  Returns quaternion equivalent to rotation represented by the Euler
        angles, in the sequence defined by ``seq``.

        Parameters
        ==========

        angles : list, tuple or Matrix of 3 numbers
            The Euler angles (in radians).
        seq : string of length 3
            Represents the sequence of rotations.
            For extrinsic rotations, seq must be all lowercase and its elements
            must be from the set ``{'x', 'y', 'z'}``
            For intrinsic rotations, seq must be all uppercase and its elements
            must be from the set ``{'X', 'Y', 'Z'}``

        Returns
        =======

        Quaternion
            The normalized rotation quaternion calculated from the Euler angles
            in the given sequence.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import pi
        >>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')
        >>> q
        sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k

        >>> q = Quaternion.from_euler([0, pi/2, pi] , 'zyz')
        >>> q
        0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k

        >>> q = Quaternion.from_euler([0, pi/2, pi] , 'ZYZ')
        >>> q
        0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k

        r3   z3 angles must be given.xyzrb   r   r&   )r8   r*   rE   r<   from_axis_angler   )rQ   anglesr?   rA   r#   rB   rC   neiejekqiqjqks                 r$   
from_eulerzQuaternion.from_eulerv  s   V v;!677!#&	))+1a +00Q16aq 00*/0Q16aq 00*/0Q16aq 00   VAY/  VAY/  VAY/BGbL))BGbL)) 100s   CC#)C(c           	         | j                         rt        d      g d}t        |      }|j                         \  }}}dj	                  |      dz   }dj	                  |      dz   }dj	                  |      dz   }|s||}}||k(  }	|	rd|z
  |z
  }||z
  ||z
  z  ||z
  z  dz  }
| j
                  | j                  | j                  | j                  g}|d   }||   }||   }||   |
z  }|	s||z
  ||z   ||z   ||z
  f\  }}}}|ry|	r:| j                         dz  }t        ||z  ||z  z   ||z  z
  ||z  z
  |z        |d<   nd| j                         dz  z  }t        ||z  ||z  z   ||z  z
  ||z  z
  |z        |d<   nVdt        t        ||z  ||z  z         t        ||z  ||z  z               z  |d<   |	s|dxx   t        j                  dz  z  cc<   d}t!        |t        j"                        rt!        |t        j"                        rd}t!        |t        j"                        rt!        |t        j"                        rd}|dk(  r~|r9t        ||      t        ||      z   |d<   t        ||      t        ||      z
  |d<   nt        ||z  ||z  z   ||z  ||z  z
        |d<   t        ||z  ||z  z
  ||z  ||z  z         |d<   n[t        j"                  |d| z  <   |dk(  rdt        ||      z  |d|z  <   n)dt        ||      z  |d|z  <   |d|z  xx   |rdndz  cc<   |	s|dxx   |
z  cc<   |rt%        |d	d	d         S t%        |      S )
a}  Returns Euler angles representing same rotation as the quaternion,
        in the sequence given by ``seq``. This implements the method described
        in [1]_.

        For degenerate cases (gymbal lock cases), the third angle is
        set to zero.

        Parameters
        ==========

        seq : string of length 3
            Represents the sequence of rotations.
            For extrinsic rotations, seq must be all lowercase and its elements
            must be from the set ``{'x', 'y', 'z'}``
            For intrinsic rotations, seq must be all uppercase and its elements
            must be from the set ``{'X', 'Y', 'Z'}``

        angle_addition : bool
            When True, first and third angles are given as an addition and
            subtraction of two simpler ``atan2`` expressions. When False, the
            first and third angles are each given by a single more complicated
            ``atan2`` expression. This equivalent expression is given by:

            .. math::

                \operatorname{atan_2} (b,a) \pm \operatorname{atan_2} (d,c) =
                \operatorname{atan_2} (bc\pm ad, ac\mp bd)

            Default value: True

        avoid_square_root : bool
            When True, the second angle is calculated with an expression based
            on ``acos``, which is slightly more complicated but avoids a square
            root. When False, second angle is calculated with ``atan2``, which
            is simpler and can be better for numerical reasons (some
            numerical implementations of ``acos`` have problems near zero).
            Default value: False


        Returns
        =======

        Tuple
            The Euler angles calculated from the quaternion

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> euler = Quaternion(a, b, c, d).to_euler('zyz')
        >>> euler
        (-atan2(-b, c) + atan2(d, a),
         2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2)),
         atan2(-b, c) + atan2(d, a))


        References
        ==========

        .. [1] https://doi.org/10.1371/journal.pone.0276302

        z(Cannot convert a quaternion with norm 0.)r   r   r   ru   rb      r&   r   N)is_zero_quaternionr*   rE   r<   indexrR   rS   rT   rU   r.   r   r   r   r   r   Pir   Zerotuple)r\   r?   angle_additionavoid_square_rootrw   rA   r#   rB   rC   	symmetricr	   r-   rR   rS   rT   rU   n2cases                     r$   to_eulerzQuaternion.to_euler  sy   @ ""$GHH!#&	))+1a KKNQKKNQKKNQaqA F	A	A A!a% AE*a/ FFDFFDFFDFF3QKQKQKQK$QAq1ua!e3JAq!QYY[!^ !a%!a%-!a%"7!a%"?2!EFq	a' !a%!a%-!a%"7!a%"?2!EFq	E$q1uq1u}"5tAEAEM7JKKF1Iq	QTTAX%	 AFFa 0DAFFa 0D19!!QK%1+5q	!!QK%1+5q	!!A#!)QqS1Q3Y7q	!!A#!)QqS1Q3Y7q	 +,&&F1I&'qy()E!QKq9}%()E!QKq9}%q9}%	"qA% 1II"&&= r1   c                    |\  }}}t        |dz  |dz  z   |dz  z         }||z  ||z  ||z  }}}t        |t        j                  z        }t	        |t        j                  z        }||z  }	||z  }
||z  } | ||	|
|      S )a  Returns a rotation quaternion given the axis and the angle of rotation.

        Parameters
        ==========

        vector : tuple of three numbers
            The vector representation of the given axis.
        angle : number
            The angle by which axis is rotated (in radians).

        Returns
        =======

        Quaternion
            The normalized rotation quaternion calculated from the given axis and the angle of rotation.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import pi, sqrt
        >>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
        >>> q
        1/2 + 1/2*i + 1/2*j + 1/2*k

        r&   )r   r   r   Halfr   )rQ   vectoranglexyzr.   srR   rS   rT   rU   s               r$   rv   zQuaternion.from_axis_angleD  s    8 	AqAqD1a4K!Q$&'Xq4xTqAEEE 1aAr1   c                    |j                         t        dd      z  }t        ||d   z   |d   z   |d   z         dz  }t        ||d   z   |d   z
  |d   z
        dz  }t        ||d   z
  |d   z   |d   z
        dz  }t        ||d   z
  |d   z
  |d   z         dz  }|t        |d   |d   z
        z  }|t        |d	   |d
   z
        z  }|t        |d   |d   z
        z  }t	        ||||      S )a  Returns the equivalent quaternion of a matrix. The quaternion will be normalized
        only if the matrix is special orthogonal (orthogonal and det(M) = 1).

        Parameters
        ==========

        M : Matrix
            Input matrix to be converted to equivalent quaternion. M must be special
            orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.

        Returns
        =======

        Quaternion
            The quaternion equivalent to given matrix.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import Matrix, symbols, cos, sin, trigsimp
        >>> x = symbols('x')
        >>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
        >>> q = trigsimp(Quaternion.from_rotation_matrix(M))
        >>> q
        sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k

        rb   r3   )r   r   )rb   rb   )r&   r&   r&   )r&   rb   )rb   r&   )r   r&   )r&   r   )rb   r   )r   rb   )detr   r   r	   rG   )rQ   MabsQrR   rS   rT   rU   s          r$   from_rotation_matrixzQuaternion.from_rotation_matrixo  s#   > uuwA&$!D')AdG34q8$!D')AdG34q8$!D')AdG34q8$!D')AdG34q8QtWqw&''QtWqw&''QtWqw&''!Q1%%r1   c                 $    | j                  |      S rf   addr\   others     r$   __add__zQuaternion.__add__      xxr1   c                 $    | j                  |      S rf   r   r   s     r$   __radd__zQuaternion.__radd__  r   r1   c                 *    | j                  |dz        S Nr   r   r   s     r$   __sub__zQuaternion.__sub__  s    xxb!!r1   c                 8    | j                  | t        |            S rf   _generic_mulr   r   s     r$   __mul__zQuaternion.__mul__  s      x77r1   c                 8    | j                  t        |      |       S rf   r   r   s     r$   __rmul__zQuaternion.__rmul__  s      %$77r1   c                 $    | j                  |      S rf   )pow)r\   ps     r$   __pow__zQuaternion.__pow__  s    xx{r1   c                 v    t        | j                   | j                   | j                   | j                         S rf   )rG   rR   rS   rT   rU   r_   s    r$   __neg__zQuaternion.__neg__  s+    466'DFF7TVVGdffW==r1   c                 $    | t        |      dz  z  S r   r   r   s     r$   __truediv__zQuaternion.__truediv__  s    genb(((r1   c                 $    t        |      | dz  z  S r   r   r   s     r$   __rtruediv__zQuaternion.__rtruediv__  s    u~b((r1   c                       | j                   | S rf   r   r\   rZ   s     r$   _eval_IntegralzQuaternion._eval_Integral  s    t~~t$$r1   c           
          |j                  dd        | j                  | j                  D cg c]  } |j                  |i | c} S c c}w )NevaluateT)
setdefaultfuncrZ   diff)r\   symbolskwargsrR   s       r$   r   zQuaternion.diff  sE    *d+tyy		J!616675f5JKKJs   A
c                 |   | }t        |      }t        |t              s|j                  rZ|j                  rNt        t        |      |j                  z   t        |      |j                  z   |j                  |j                        S |j                  r9t        |j                  |z   |j                  |j                  |j                        S t        d      t        |j                  |j                  z   |j                  |j                  z   |j                  |j                  z   |j                  |j                  z         S )a  Adds quaternions.

        Parameters
        ==========

        other : Quaternion
            The quaternion to add to current (self) quaternion.

        Returns
        =======

        Quaternion
            The resultant quaternion after adding self to other

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols
        >>> q1 = Quaternion(1, 2, 3, 4)
        >>> q2 = Quaternion(5, 6, 7, 8)
        >>> q1.add(q2)
        6 + 8*i + 10*j + 12*k
        >>> q1 + 5
        6 + 2*i + 3*j + 4*k
        >>> x = symbols('x', real = True)
        >>> q1.add(x)
        (x + 1) + 2*i + 3*j + 4*k

        Quaternions over complex fields :

        >>> from sympy import Quaternion
        >>> from sympy import I
        >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
        >>> q3.add(2 + 3*I)
        (5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k

        z<Only commutative expressions can be added with a Quaternion.)r   
isinstancerG   rV   
is_complexr   rR   r   rS   rT   rU   rJ   r*   )r\   r   q1q2s       r$   r   zQuaternion.add  s    N U^ "j)}}!"R&244-B"$$bddKK""!"$$)RTT244>> !_``"$$+rttbdd{BDD244KDDB! " 	"r1   c                 8    | j                  | t        |            S )a  Multiplies quaternions.

        Parameters
        ==========

        other : Quaternion or symbol
            The quaternion to multiply to current (self) quaternion.

        Returns
        =======

        Quaternion
            The resultant quaternion after multiplying self with other

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols
        >>> q1 = Quaternion(1, 2, 3, 4)
        >>> q2 = Quaternion(5, 6, 7, 8)
        >>> q1.mul(q2)
        (-60) + 12*i + 30*j + 24*k
        >>> q1.mul(2)
        2 + 4*i + 6*j + 8*k
        >>> x = symbols('x', real = True)
        >>> q1.mul(x)
        x + 2*x*i + 3*x*j + 4*x*k

        Quaternions over complex fields :

        >>> from sympy import Quaternion
        >>> from sympy import I
        >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
        >>> q3.mul(2 + 3*I)
        (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k

        r   r   s     r$   mulzQuaternion.mul  s    N   x77r1   c                    t        | t              st        |t              s| |z  S t        | t              s|j                  r/| j                  r#t        t	        |       t        |       dd      |z  S | j                  rBt        | |j                  z  | |j                  z  | |j                  z  | |j                  z        S t        d      t        |t              s| j                  r/|j                  r#| t        t	        |      t        |      dd      z  S |j                  rBt        || j                  z  || j                  z  || j                  z  || j                  z        S t        d      | j                  |j                  d}n!| j                         |j                         z  }t        | j                   |j                  z  | j                  |j                  z  z
  | j                  |j                  z  z
  | j                  |j                  z  z   | j                  |j                  z  | j                  |j                  z  z   | j                  |j                  z  z
  | j                  |j                  z  z   | j                   |j                  z  | j                  |j                  z  z   | j                  |j                  z  z   | j                  |j                  z  z   | j                  |j                  z  | j                  |j                  z  z
  | j                  |j                  z  z   | j                  |j                  z  z   |      S )an  Generic multiplication.

        Parameters
        ==========

        q1 : Quaternion or symbol
        q2 : Quaternion or symbol

        It is important to note that if neither q1 nor q2 is a Quaternion,
        this function simply returns q1 * q2.

        Returns
        =======

        Quaternion
            The resultant quaternion after multiplying q1 and q2

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import Symbol, S
        >>> q1 = Quaternion(1, 2, 3, 4)
        >>> q2 = Quaternion(5, 6, 7, 8)
        >>> Quaternion._generic_mul(q1, q2)
        (-60) + 12*i + 30*j + 24*k
        >>> Quaternion._generic_mul(q1, S(2))
        2 + 4*i + 6*j + 8*k
        >>> x = Symbol('x', real = True)
        >>> Quaternion._generic_mul(q1, x)
        x + 2*x*i + 3*x*j + 4*x*k

        Quaternions over complex fields :

        >>> from sympy import I
        >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
        >>> Quaternion._generic_mul(q3, 2 + 3*I)
        (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k

        r   zAOnly commutative expressions can be multiplied with a Quaternion.Nr.   )r   rG   rV   r   r   r   rJ   rR   rS   rT   rU   r*   r[   r.   )r   r   r.   s      r$   r   zQuaternion._generic_mul  sf   V "j)*R2L7N "j)}}!"R&"R&!Q7"<<""!"rtt)R"$$YRTT	29MM !dee "j)}}Jr"vr"vq!<<<""!"rtt)R"$$YRTT	29MM !dee 88 0D779rwwy(D244%*rttBDDy02449<rttBDDyH$$rtt)bdd244i/"$$rtt);bdd244iG44%*rttBDDy02449<rttBDDyH$$rtt)bdd244i/"$$rtt);bddRTTkI#	% 	%r1   c                     | }t        |j                  |j                   |j                   |j                   |j
                        S )z(Returns the conjugate of the quaternion.r   )rG   rR   rS   rT   rU   r[   r\   qs     r$   _eval_conjugatezQuaternion._eval_conjugateh  s4    !##taccTACC4agg>>r1   c                     | j                   S| }t        t        |j                  dz  |j                  dz  z   |j
                  dz  z   |j                  dz  z               S | j                   S )z#Returns the norm of the quaternion.r&   )r[   r   r   rR   rS   rT   rU   r   s     r$   r.   zQuaternion.normm  s[    ::A a!##q&1336!9ACCF!BCDDzzr1   c                 2    | }|d|j                         z  z  S )z.Returns the normalized form of the quaternion.rb   r   r   s     r$   	normalizezQuaternion.normalizew  s    AaffhJr1   c                     | }|j                         st        d      t        |      d|j                         dz  z  z  S )z&Returns the inverse of the quaternion.z6Cannot compute inverse for a quaternion with zero normrb   r&   )r.   r*   r   r   s     r$   inversezQuaternion.inverse|  s9    vvxUVV|q1}--r1   c                     	 | t        |      }}|dk  r|j                         | }}|dk(  r|S t	        dddd      }|dkD  r|dz  r||z  }||z  }|dz  }|dkD  r|S # t        $ r	 t        cY S w xY w)a  Finds the pth power of the quaternion.

        Parameters
        ==========

        p : int
            Power to be applied on quaternion.

        Returns
        =======

        Quaternion
            Returns the p-th power of the current quaternion.
            Returns the inverse if p = -1.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.pow(4)
        668 + (-224)*i + (-336)*j + (-448)*k

        r   rb   )r   r*   NotImplementedr   rG   )r\   r   r   ress       r$   r   zQuaternion.pow  s    2	"qA q599;qA6HAq!$!e1uqFA!GA	 !e 
!  	"!!	"s   A A/.A/c                    | }t        |j                  dz  |j                  dz  z   |j                  dz  z         }t	        |j
                        t        |      z  }t	        |j
                        t        |      z  |j                  z  |z  }t	        |j
                        t        |      z  |j                  z  |z  }t	        |j
                        t        |      z  |j                  z  |z  }t        ||||      S )a  Returns the exponential of $q$, given by $e^q$.

        Returns
        =======

        Quaternion
            The exponential of the quaternion.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.exp()
        E*cos(sqrt(29))
        + 2*sqrt(29)*E*sin(sqrt(29))/29*i
        + 3*sqrt(29)*E*sin(sqrt(29))/29*j
        + 4*sqrt(29)*E*sin(sqrt(29))/29*k

        r&   )	r   rS   rT   rU   r
   rR   r   r   rG   )r\   r   vector_normrR   rS   rT   rU   s          r$   r
   zQuaternion.exp  s    , 1336ACCF?QSS!V34Hs;''Hs;''!##-;Hs;''!##-;Hs;''!##-;!Q1%%r1   c                    | }t        |j                  dz  |j                  dz  z   |j                  dz  z         }|j	                         }t        |      }|j                  t        |j                  |z        z  |z  }|j                  t        |j                  |z        z  |z  }|j                  t        |j                  |z        z  |z  }t        ||||      S )ag  Returns the logarithm of the quaternion, given by $\log q$.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.log()
        log(sqrt(30))
        + 2*sqrt(29)*acos(sqrt(30)/30)/29*i
        + 3*sqrt(29)*acos(sqrt(30)/30)/29*j
        + 4*sqrt(29)*acos(sqrt(30)/30)/29*k

        r&   )	r   rS   rT   rU   r.   lnr   rR   rG   )r\   r   r   q_normrR   rS   rT   rU   s           r$   r   zQuaternion.log  s      1336ACCF?QSS!V34vJCC$qssV|$${2CC$qssV|$${2CC$qssV|$${2!Q1%%r1   c                     | j                   D cg c]  } |j                  |  }}| j                  }| |j                  | }t        ||       t	        |d|iS c c}w )Nr.   )rZ   subsr[   r0   rG   )r\   rZ   r#   r-   r.   s        r$   
_eval_subszQuaternion._eval_subs  sa    +/995aFAFFDM55zz499d#DHd#8/$// 6s   Ac                     t        |      }t        | j                  D cg c]  }|j                  |       c} S c c}w )a  Returns the floating point approximations (decimal numbers) of the quaternion.

        Returns
        =======

        Quaternion
            Floating point approximations of quaternion(self)

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import sqrt
        >>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
        >>> q.evalf()
        1.00000000000000
        + 0.707106781186547*i
        + 0.577350269189626*j
        + 0.500000000000000*k

        )rx   )r   rG   rZ   evalf)r\   precnprecargs       r$   _eval_evalfzQuaternion._eval_evalf  s6    , D!$))D3CIII.DEEDs   <c                     | }|j                         \  }}t        j                  |||z        }||j                         |z  z  S )aY  Computes the pth power in the cos-sin form.

        Parameters
        ==========

        p : int
            Power to be applied on quaternion.

        Returns
        =======

        Quaternion
            The p-th power in the cos-sin form.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.pow_cos_sin(4)
        900*cos(4*acos(sqrt(30)/30))
        + 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
        + 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
        + 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k

        )to_axis_anglerG   rv   r.   )r\   r   r   vr   r   s         r$   pow_cos_sinzQuaternion.pow_cos_sin
  sD    < __&
E''1u95QVVXq[!!r1   c           	          t        t        | j                  g| t        | j                  g| t        | j                  g| t        | j
                  g|       S )a  Computes integration of quaternion.

        Returns
        =======

        Quaternion
            Integration of the quaternion(self) with the given variable.

        Examples
        ========

        Indefinite Integral of quaternion :

        >>> from sympy import Quaternion
        >>> from sympy.abc import x
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.integrate(x)
        x + 2*x*i + 3*x*j + 4*x*k

        Definite integral of quaternion :

        >>> from sympy import Quaternion
        >>> from sympy.abc import x
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.integrate((x, 1, 5))
        4 + 8*i + 12*j + 16*k

        )rG   r   rR   rS   rT   rU   r   s     r$   r   zQuaternion.integrate-  sT    < )DFF2T2Idff4Lt4L#DFF2T2Idff4Lt4LN 	Nr1   c                    t        |t              rt        j                  |d   |d         }n|j	                         }|t        d| d   | d   | d         z  t        |      z  }|j                  |j                  |j                  fS )a  Returns the coordinates of the point pin (a 3 tuple) after rotation.

        Parameters
        ==========

        pin : tuple
            A 3-element tuple of coordinates of a point which needs to be
            rotated.
        r : Quaternion or tuple
            Axis and angle of rotation.

            It's important to note that when r is a tuple, it must be of the form
            (axis, angle)

        Returns
        =======

        tuple
            The coordinates of the point after rotation.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols, trigsimp, cos, sin
        >>> x = symbols('x')
        >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
        >>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
        (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
        >>> (axis, angle) = q.to_axis_angle()
        >>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
        (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)

        r   rb   r&   )	r   r   rG   rv   r   r   rS   rT   rU   )pinrr   pouts       r$   rotate_pointzQuaternion.rotate_pointN  sy    H a**1Q416A A:aQQQ889Q<G''r1   c                    | }|j                   j                  r|dz  }|j                         }t        dt	        |j                         z        }t        d|j                   |j                   z  z
        }t        |j                  |z        }t        |j                  |z        }t        |j                  |z        }|||f}||f}|S )a  Returns the axis and angle of rotation of a quaternion.

        Returns
        =======

        tuple
            Tuple of (axis, angle)

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 1, 1, 1)
        >>> (axis, angle) = q.to_axis_angle()
        >>> axis
        (sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
        >>> angle
        2*pi/3

        r   r&   rb   )	rR   is_negativer   r   r   r   rS   rT   rU   )	r\   r   r   r   r   r   r   r   ts	            r$   r   zQuaternion.to_axis_angle{  s    * 33??BAKKMT!##Y' QSSWQSS1WQSS1WQSS1W1IJr1   c           	      ^   | }|j                         dz  }|r||j                  dz  |j                  dz  z   |j                  dz  z
  |j                  dz  z
  z  }||j                  dz  |j                  dz  z
  |j                  dz  z   |j                  dz  z
  z  }||j                  dz  |j                  dz  z
  |j                  dz  z
  |j                  dz  z   z  }nxdd|z  |j                  dz  |j                  dz  z   z  z
  }dd|z  |j                  dz  |j                  dz  z   z  z
  }dd|z  |j                  dz  |j                  dz  z   z  z
  }d|z  |j                  |j                  z  |j                  |j                  z  z
  z  }d|z  |j                  |j                  z  |j                  |j                  z  z   z  }	d|z  |j                  |j                  z  |j                  |j                  z  z   z  }
d|z  |j                  |j                  z  |j                  |j                  z  z
  z  }d|z  |j                  |j                  z  |j                  |j                  z  z
  z  }d|z  |j                  |j                  z  |j                  |j                  z  z   z  }|st        |||	g|
||g|||gg      S |\  }}}|||z  z
  ||z  z
  ||	z  z
  }|||
z  z
  ||z  z
  ||z  z
  }|||z  z
  ||z  z
  ||z  z
  }dx}x}}d}t        |||	|g|
|||g||||g||||gg      S )a  Returns the equivalent rotation transformation matrix of the quaternion
        which represents rotation about the origin if ``v`` is not passed.

        Parameters
        ==========

        v : tuple or None
            Default value: None
        homogeneous : bool
            When True, gives an expression that may be more efficient for
            symbolic calculations but less so for direct evaluation. Both
            formulas are mathematically equivalent.
            Default value: True

        Returns
        =======

        tuple
            Returns the equivalent rotation transformation matrix of the quaternion
            which represents rotation about the origin if v is not passed.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols, trigsimp, cos, sin
        >>> x = symbols('x')
        >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
        >>> trigsimp(q.to_rotation_matrix())
        Matrix([
        [cos(x), -sin(x), 0],
        [sin(x),  cos(x), 0],
        [     0,       0, 1]])

        Generates a 4x4 transformation matrix (used for rotation about a point
        other than the origin) if the point(v) is passed as an argument.
        r&   rb   r   )r.   rR   rS   rT   rU   ri   )r\   r   homogeneousr   r   m00m11m22m01m02m10m12m20m21r   r   r   m03m13m23m30m31m32m33s                           r$   to_rotation_matrixzQuaternion.to_rotation_matrix  s$   N FFHbL QSS!Vacc1f_qssAv-Q67CQSS!Vacc1f_qssAv-Q67CQSS!Vacc1f_qssAv-Q67Cac1336ACCF?++Cac1336ACCF?++Cac1336ACCF?++Cc133qss7QSSW$%c133qss7QSSW$%c133qss7QSSW$%c133qss7QSSW$%c133qss7QSSW$%c133qss7QSSW$%Cc?S#sOc3_MNN IQ1ae)ae#ae+Cae)ae#ae+Cae)ae#ae+CC#CCc3/#sC1ES#.c30DF G Gr1   c                     | j                   S )am  Returns scalar part($\mathbf{S}(q)$) of the quaternion q.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{S}(q) = a$.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(4, 8, 13, 12)
        >>> q.scalar_part()
        4

        )rR   r_   s    r$   scalar_partzQuaternion.scalar_part  s    $ vvr1   c                 Z    t        d| j                  | j                  | j                        S )a  
        Returns $\mathbf{V}(q)$, the vector part of the quaternion $q$.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{V}(q) = bi + cj + dk$.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 1, 1, 1)
        >>> q.vector_part()
        0 + 1*i + 1*j + 1*k

        >>> q = Quaternion(4, 8, 13, 12)
        >>> q.vector_part()
        0 + 8*i + 13*j + 12*k

        r   )rG   rS   rT   rU   r_   s    r$   vector_partzQuaternion.vector_part  s!    . !TVVTVVTVV44r1   c                     | j                         j                         }t        d|j                  |j                  |j
                        S )a  
        Returns $\mathbf{Ax}(q)$, the axis of the quaternion $q$.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{Ax}(q)$  i.e., the versor of the vector part of that quaternion
        equal to $\mathbf{U}[\mathbf{V}(q)]$.
        The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 1, 1, 1)
        >>> q.axis()
        0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k

        See Also
        ========

        vector_part

        r   )r	  r   rG   rS   rT   rU   )r\   axiss     r$   r  zQuaternion.axis  s8    2 !++-!TVVTVVTVV44r1   c                 .    | j                   j                  S )a  
        Returns true if the quaternion is pure, false if the quaternion is not pure
        or returns none if it is unknown.

        Explanation
        ===========

        A pure quaternion (also a vector quaternion) is a quaternion with scalar
        part equal to 0.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(0, 8, 13, 12)
        >>> q.is_pure()
        True

        See Also
        ========
        scalar_part

        )rR   is_zeror_   s    r$   is_purezQuaternion.is_pure9  s    2 vv~~r1   c                 6    | j                         j                  S )a  
        Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion
        and None if the value is unknown.

        Explanation
        ===========

        A zero quaternion is a quaternion with both scalar part and
        vector part equal to 0.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 0, 0, 0)
        >>> q.is_zero_quaternion()
        False

        >>> q = Quaternion(0, 0, 0, 0)
        >>> q.is_zero_quaternion()
        True

        See Also
        ========
        scalar_part
        vector_part

        )r.   r  r_   s    r$   r   zQuaternion.is_zero_quaternionT  s    < yy{"""r1   c                 t    dt        | j                         j                         | j                               z  S )a7  
        Returns the angle of the quaternion measured in the real-axis plane.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$ where $a$, $b$, $c$ and $d$
        are real numbers, returns the angle of the quaternion given by

        .. math::
            \theta := 2 \operatorname{atan_2}\left(\sqrt{b^2 + c^2 + d^2}, {a}\right)

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 4, 4, 4)
        >>> q.angle()
        2*atan(4*sqrt(3))

        r&   )r   r	  r.   r  r_   s    r$   r   zQuaternion.anglet  s1    . 5))+002D4D4D4FGGGr1   c                 &   | j                         s|j                         rt        d      t        | j                         |j                         z
  j                         | j                         |j                         z   j                         g      S )aS  
        Returns True if the transformation arcs represented by the input quaternions happen in the same plane.

        Explanation
        ===========

        Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel.
        The plane of a quaternion is the one normal to its axis.

        Parameters
        ==========

        other : a Quaternion

        Returns
        =======

        True : if the planes of the two quaternions are the same, apart from its orientation/sign.
        False : if the planes of the two quaternions are not the same, apart from its orientation/sign.
        None : if plane of either of the quaternion is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q1 = Quaternion(1, 4, 4, 4)
        >>> q2 = Quaternion(3, 8, 8, 8)
        >>> Quaternion.arc_coplanar(q1, q2)
        True

        >>> q1 = Quaternion(2, 8, 13, 12)
        >>> Quaternion.arc_coplanar(q1, q2)
        False

        See Also
        ========

        vector_coplanar
        is_pure

        z)Neither of the given quaternions can be 0)r   r*   r   r  r   s     r$   arc_coplanarzQuaternion.arc_coplanar  sp    T ##%5+C+C+EHII$))+

4HHJTYY[[`[e[e[gMgL{L{L}~r1   c                    t        |j                               s2t        |j                               st        |j                               rt        d      t        |j                  |j
                  |j                  g|j                  |j
                  |j                  g|j                  |j
                  |j                  gg      j                         }|j                  S )a"  
        Returns True if the axis of the pure quaternions seen as 3D vectors
        ``q1``, ``q2``, and ``q3`` are coplanar.

        Explanation
        ===========

        Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.

        Parameters
        ==========

        q1
            A pure Quaternion.
        q2
            A pure Quaternion.
        q3
            A pure Quaternion.

        Returns
        =======

        True : if the axis of the pure quaternions seen as 3D vectors
        q1, q2, and q3 are coplanar.
        False : if the axis of the pure quaternions seen as 3D vectors
        q1, q2, and q3 are not coplanar.
        None : if the axis of the pure quaternions seen as 3D vectors
        q1, q2, and q3 are coplanar is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q1 = Quaternion(0, 4, 4, 4)
        >>> q2 = Quaternion(0, 8, 8, 8)
        >>> q3 = Quaternion(0, 24, 24, 24)
        >>> Quaternion.vector_coplanar(q1, q2, q3)
        True

        >>> q1 = Quaternion(0, 8, 16, 8)
        >>> q2 = Quaternion(0, 8, 3, 12)
        >>> Quaternion.vector_coplanar(q1, q2, q3)
        False

        See Also
        ========

        axis
        is_pure

        "The given quaternions must be pure)	r   r  r*   ri   rS   rT   rU   r   r  )rQ   r   r   q3r   s        r$   vector_coplanarzQuaternion.vector_coplanar  s    l RZZ\"i

&=2::<AXABBRTT244&rttRTT(:RTT244<NOPTTVyyr1   c                     t        | j                               st        |j                               rt        d      | |z  || z  z
  j                         S )a  
        Returns True if the two pure quaternions seen as 3D vectors are parallel.

        Explanation
        ===========

        Two pure quaternions are called parallel when their vector product is commutative which
        implies that the quaternions seen as 3D vectors have same direction.

        Parameters
        ==========

        other : a Quaternion

        Returns
        =======

        True : if the two pure quaternions seen as 3D vectors are parallel.
        False : if the two pure quaternions seen as 3D vectors are not parallel.
        None : if the two pure quaternions seen as 3D vectors are parallel is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(0, 4, 4, 4)
        >>> q1 = Quaternion(0, 8, 8, 8)
        >>> q.parallel(q1)
        True

        >>> q1 = Quaternion(0, 8, 13, 12)
        >>> q.parallel(q1)
        False

        z%The provided quaternions must be purer   r  r*   r   r   s     r$   parallelzQuaternion.parallel  sH    J T\\^$	%--/(BDEEU
U4Z';;==r1   c                     t        | j                               st        |j                               rt        d      | |z  || z  z   j                         S )a|  
        Returns the orthogonality of two quaternions.

        Explanation
        ===========

        Two pure quaternions are called orthogonal when their product is anti-commutative.

        Parameters
        ==========

        other : a Quaternion

        Returns
        =======

        True : if the two pure quaternions seen as 3D vectors are orthogonal.
        False : if the two pure quaternions seen as 3D vectors are not orthogonal.
        None : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(0, 4, 4, 4)
        >>> q1 = Quaternion(0, 8, 8, 8)
        >>> q.orthogonal(q1)
        False

        >>> q1 = Quaternion(0, 2, 2, 0)
        >>> q = Quaternion(0, 2, -2, 0)
        >>> q.orthogonal(q1)
        True

        r  r  r   s     r$   
orthogonalzQuaternion.orthogonal#  sH    J T\\^$	%--/(BABBU
U4Z';;==r1   c                 D    | j                         | j                         z  S )a  
        Returns the index vector of the quaternion.

        Explanation
        ===========

        The index vector is given by $\mathbf{T}(q)$, the norm (or magnitude) of
        the quaternion $q$, multiplied by $\mathbf{Ax}(q)$, the axis of $q$.

        Returns
        =======

        Quaternion: representing index vector of the provided quaternion.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(2, 4, 2, 4)
        >>> q.index_vector()
        0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k

        See Also
        ========

        axis
        norm

        )r.   r  r_   s    r$   index_vectorzQuaternion.index_vectorM  s    > yy{TYY[((r1   c                 4    t        | j                               S )aj  
        Returns the natural logarithm of the norm(magnitude) of the quaternion.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(2, 4, 2, 4)
        >>> q.mensor()
        log(2*sqrt(10))
        >>> q.norm()
        2*sqrt(10)

        See Also
        ========

        norm

        )r   r.   r_   s    r$   mensorzQuaternion.mensorn  s    * $))+r1   )r   r   r   r   TN)F)TF)NT)A__name__
__module____qualname____doc___op_priorityrJ   rN   rP   propertyrR   rS   rT   rU   rV   rj   rl   ro   classmethodrs   r   r   rv   r   r   r   r   r   r   r   r   r   r   r   r   r   r   staticmethodr   r   r.   r   r   r   r
   r   r   r   r   r   r   r   r  r  r	  r  r  r   r   r  r  r  r  r  r  __classcell__)rX   s   @r$   rG   rG   :   s   /` LN"H             /4 /4b 44 44l/%b () ()T =* =*~L!\ ( (T )& )&V"88>))%L4"l'8R I% I%V?
 
.+Z&>&40F2!"FNB *( *(X&PJGX(525:6#@H4-@^ 9 9v(>T(>T)Br1   rG   N)-sympy.core.numbersr   sympy.core.singletonr   sympy.core.relationalr   $sympy.functions.elementary.complexesr   r   r   r	   &sympy.functions.elementary.exponentialr
   r   r   (sympy.functions.elementary.miscellaneousr   (sympy.functions.elementary.trigonometricr   r   r   r   r   sympy.simplify.trigsimpr   sympy.integrals.integralsr   sympy.matrices.denser   ri   sympy.core.sympifyr   r   sympy.core.exprr   sympy.core.logicr   r   sympy.utilities.miscr   mpmath.libmp.libmpfr   r0   rE   rG   r(   r1   r$   <module>r8     sS    ' " ' J J C 9 H H ? , / = 0   0 ' +=6I Ir1   