
    wg                    x   d Z g dZddlZddlZddlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlZddlmZm
Z ddl m!Z!m"Z" dd	l#m$Z$ dd
l%m&Z& ddl'm"Z" d Z(dNdZ)e*fdZ+d Z, G d d      Z- G d de-      Z. G d de-      Z/ G d de-      Z0 G d de-      Z1 e1d      Z2 e1d      Z3 e1d      Z4 e/d      xZ5Z6 e/d      Z7 e/d      Z8 e/d       Z9 e/d!      Z: e.d"      Z; e.d#      Z<d$ Z=d% Z>ej|                  j                   e>_         d& Z?e?j                   Rej~                  j                   dej~                  j                   j                  d'       j                         d(z   e?_         dOej                  d)d*ZCdPd+ZDdOd,ZEdNd-ZFdNd.ZGd/ ZHd0 ZIdNd1ZJej                  fd2ZKej                  fd3ZLdQd4ZMdRd5ZNdSd6ZOdSd7ZPdRd8ZQdRd9ZRd: ZSdSd;ZTdTd=ZUdUd>ZVdd<ej                  d<ej                  fd?ZW G d@ dAe&      ZX G dB dCeX      ZY eY       ZZdVdDZ[dE Z\dNdFZ]dG Z^dNdHZ_dI Z`dJ ZadK ZbdNdLZc ej                  ej                  j                   ecj                         ec_         dWdMZe ej                  ej                  j                   eej                         ee_         y)Xz
Masked arrays add-ons.

A collection of utilities for `numpy.ma`.

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $

).apply_along_axisapply_over_axes
atleast_1d
atleast_2d
atleast_3daverageclump_maskedclump_unmaskedcolumn_stackcompress_colscompress_ndcompress_rowcolscompress_rowscount_maskedcorrcoefcovdiagflatdotdstackediff1dflatnotmasked_contiguousflatnotmasked_edgeshsplithstackisinin1dintersect1d	mask_colsmask_rowcols	mask_rows
masked_allmasked_all_likemedianmr_ndenumeratenotmasked_contiguousnotmasked_edgespolyfit	row_stack	setdiff1dsetxor1dstackuniqueunion1dvandervstack    N   )core)MaskedArrayMAErroraddarrayasarrayconcatenatefilledcountgetmaskgetmaskarraymake_mask_descrmaskedmasked_arraymask_ornomaskonessortzerosgetdataget_masked_subclassr   )ndarrayr6   )normalize_axis_indexnormalize_axis_tuple)_ureduce)AxisConcatenator)rI   c                 8    t        | t        t        t        f      S )z6
    Is seq a sequence (ndarray, list or tuple)?

    )
isinstancerG   tuplelist)seqs    T/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/numpy/ma/extras.py
issequencerR   )   s    
 cGUD122    c                 :    t        |       }|j                  |      S )a  
    Count the number of masked elements along the given axis.

    Parameters
    ----------
    arr : array_like
        An array with (possibly) masked elements.
    axis : int, optional
        Axis along which to count. If None (default), a flattened
        version of the array is used.

    Returns
    -------
    count : int, ndarray
        The total number of masked elements (axis=None) or the number
        of masked elements along each slice of the given axis.

    See Also
    --------
    MaskedArray.count : Count non-masked elements.

    Examples
    --------
    >>> a = np.arange(9).reshape((3,3))
    >>> a = np.ma.array(a)
    >>> a[1, 0] = np.ma.masked
    >>> a[1, 2] = np.ma.masked
    >>> a[2, 1] = np.ma.masked
    >>> a
    masked_array(
      data=[[0, 1, 2],
            [--, 4, --],
            [6, --, 8]],
      mask=[[False, False, False],
            [ True, False,  True],
            [False,  True, False]],
      fill_value=999999)
    >>> np.ma.count_masked(a)
    3

    When the `axis` keyword is used an array is returned.

    >>> np.ma.count_masked(a, axis=0)
    array([1, 1, 1])
    >>> np.ma.count_masked(a, axis=1)
    array([0, 2, 1])

    )r<   sum)arraxisms      rQ   r   r   1   s    b 	SA55;rS   c           	          t        t        j                  | |      t        j                  | t	        |                  }|S )a  
    Empty masked array with all elements masked.

    Return an empty masked array of the given shape and dtype, where all the
    data are masked.

    Parameters
    ----------
    shape : int or tuple of ints
        Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``.
    dtype : dtype, optional
        Data type of the output.

    Returns
    -------
    a : MaskedArray
        A masked array with all data masked.

    See Also
    --------
    masked_all_like : Empty masked array modelled on an existing array.

    Notes
    -----
    Unlike other masked array creation functions (e.g. `numpy.ma.zeros`,
    `numpy.ma.ones`, `numpy.ma.full`), `masked_all` does not initialize the
    values of the array, and may therefore be marginally faster. However,
    the values stored in the newly allocated array are arbitrary. For
    reproducible behavior, be sure to set each element of the array before
    reading.

    Examples
    --------
    >>> np.ma.masked_all((3, 3))
    masked_array(
      data=[[--, --, --],
            [--, --, --],
            [--, --, --]],
      mask=[[ True,  True,  True],
            [ True,  True,  True],
            [ True,  True,  True]],
      fill_value=1e+20,
      dtype=float64)

    The `dtype` parameter defines the underlying data type.

    >>> a = np.ma.masked_all((3, 3))
    >>> a.dtype
    dtype('float64')
    >>> a = np.ma.masked_all((3, 3), dtype=np.int32)
    >>> a.dtype
    dtype('int32')

    mask)r?   npemptyrB   r=   )shapedtypeas      rQ   r    r    f   s5    n 	RXXeU+''%)?@	BAHrS   c                     t        j                  |       j                  t              }t        j                  |j
                  t        |j                              |_        |S )a,  
    Empty masked array with the properties of an existing array.

    Return an empty masked array of the same shape and dtype as
    the array `arr`, where all the data are masked.

    Parameters
    ----------
    arr : ndarray
        An array describing the shape and dtype of the required MaskedArray.

    Returns
    -------
    a : MaskedArray
        A masked array with all data masked.

    Raises
    ------
    AttributeError
        If `arr` doesn't have a shape attribute (i.e. not an ndarray)

    See Also
    --------
    masked_all : Empty masked array with all elements masked.

    Notes
    -----
    Unlike other masked array creation functions (e.g. `numpy.ma.zeros_like`,
    `numpy.ma.ones_like`, `numpy.ma.full_like`), `masked_all_like` does not
    initialize the values of the array, and may therefore be marginally
    faster. However, the values stored in the newly allocated array are
    arbitrary. For reproducible behavior, be sure to set each element of the
    array before reading.

    Examples
    --------
    >>> arr = np.zeros((2, 3), dtype=np.float32)
    >>> arr
    array([[0., 0., 0.],
           [0., 0., 0.]], dtype=float32)
    >>> np.ma.masked_all_like(arr)
    masked_array(
      data=[[--, --, --],
            [--, --, --]],
      mask=[[ True,  True,  True],
            [ True,  True,  True]],
      fill_value=np.float64(1e+20),
      dtype=float32)

    The dtype of the masked array matches the dtype of `arr`.

    >>> arr.dtype
    dtype('float32')
    >>> np.ma.masked_all_like(arr).dtype
    dtype('float32')

    r_   )	r\   
empty_likeviewr3   rB   r^   r=   r_   _mask)rV   r`   s     rQ   r!   r!      sB    t 	c,Aggagg_QWW%=>AGHrS   c                   "    e Zd ZdZd Zd Zd Zy)_fromnxfunctionaV  
    Defines a wrapper to adapt NumPy functions to masked arrays.


    An instance of `_fromnxfunction` can be called with the same parameters
    as the wrapped NumPy function. The docstring of `newfunc` is adapted from
    the wrapped function as well, see `getdoc`.

    This class should not be used directly. Instead, one of its extensions that
    provides support for a specific type of input should be used.

    Parameters
    ----------
    funcname : str
        The name of the function to be adapted. The function should be
        in the NumPy namespace (i.e. ``np.funcname``).

    c                 <    || _         | j                         | _        y N)__name__getdoc__doc__)selffuncnames     rQ   __init__z_fromnxfunction.__init__   s     {{}rS   c                     t        t        | j                  d      }t        |dd      }|rDt        j                  |      }t        j
                  |d      }|r| j                  |z   dz   }||z   S y)aK  
        Retrieve the docstring and signature from the function.

        The ``__doc__`` attribute of the function is used as the docstring for
        the new masked array version of the function. A note on application
        of the function to the mask is appended.

        Parameters
        ----------
        None

        Nrl   z@The function is applied to both the _data and the _mask, if any.z

)getattrr\   rj   maget_object_signaturedoc_note)rm   npfuncdocsigs       rQ   rk   z_fromnxfunction.getdoc   so     T]]D1fi.))&1C++c $< =Cmmc)F29rS   c                      y ri    )rm   argsparamss      rQ   __call__z_fromnxfunction.__call__  s    rS   N)rj   
__module____qualname__rl   ro   rk   r|   ry   rS   rQ   rg   rg      s    &%0rS   rg   c                       e Zd ZdZd Zy)_fromnxfunction_singlez
    A version of `_fromnxfunction` that is called with a single array
    argument followed by auxiliary args that are passed verbatim for
    both the data and mask calls.
    c                 P   t        t        | j                        }t        |t              r< ||j                         g|i |} |t        |      g|i |}t        ||      S  |t        j                  |      g|i |} |t        |      g|i |}t        ||      S NrZ   )	rq   r\   rj   rM   rG   	__array__r<   r?   r7   )rm   xrz   r{   func_d_ms          rQ   r|   z_fromnxfunction_single.__call__  s    r4==)a!akkm5d5f5Bl1o777B,,bjjm5d5f5Bl1o777B,,rS   Nrj   r}   r~   rl   r|   ry   rS   rQ   r   r     s    
	-rS   r   c                       e Zd ZdZd Zy)_fromnxfunction_seqz
    A version of `_fromnxfunction` that is called with a single sequence
    of arrays followed by auxiliary args that are passed verbatim for
    both the data and mask calls.
    c           
      (   t        t        | j                        } |t        |D cg c]  }t        j                  |       c}      g|i |} |t        |D cg c]  }t        |       c}      g|i |}t        ||      S c c}w c c}w r   )rq   r\   rj   rN   r7   r<   r?   )rm   r   rz   r{   r   r`   r   r   s           rQ   r|   z_fromnxfunction_seq.__call__0  s{    r4==)%21A23EdEfE%!4Qa45GGGBR(( 34s   B
BNr   ry   rS   rQ   r   r   *  s    
)rS   r   c                       e Zd ZdZd Zy)_fromnxfunction_argsa  
    A version of `_fromnxfunction` that is called with multiple array
    arguments. The first non-array-like input marks the beginning of the
    arguments that are passed verbatim for both the data and mask calls.
    Array arguments are processed independently and the results are
    returned in a list. If only one array is found, the return value is
    just the processed array instead of a list.
    c                    t        t        | j                        }g }t        |      }t	        |      dkD  rKt        |d         r=|j                  |j                  d             t	        |      dkD  rt        |d         r=g }|D ]R  } |t        j                  |      g|i |} |t        |      g|i |}|j                  t        ||             T t	        |      dk(  r|d   S |S )Nr0   rZ   r1   )rq   r\   rj   rO   lenrR   appendpopr7   r<   r?   )	rm   rz   r{   r   arraysresr   r   r   s	            rQ   r|   z_fromnxfunction_args.__call__@  s    r4==)Dz$i!m
47 3MM$((1+& $i!m
47 3 	2Abjjm5d5f5Bl1o777BJJ|BR01	2 v;!q6M
rS   Nr   ry   rS   rQ   r   r   7  s    rS   r   c                       e Zd ZdZd Zy)_fromnxfunction_allargsa  
    A version of `_fromnxfunction` that is called with multiple array
    arguments. Similar to `_fromnxfunction_args` except that all args
    are converted to arrays even if they are not so already. This makes
    it possible to process scalars as 1-D arrays. Only keyword arguments
    are passed through verbatim for the data and mask calls. Arrays
    arguments are processed independently and the results are returned
    in a list. If only one arg is present, the return value is just the
    processed array instead of a list.
    c                    t        t        | j                        }g }|D ]L  } |t        j                  |      fi |} |t	        |      fi |}|j                  t        ||             N t        |      dk(  r|d   S |S )NrZ   r1   r0   )rq   r\   rj   r7   r<   r   r?   r   )rm   rz   r{   r   r   r   r   r   s           rQ   r|   z _fromnxfunction_allargs.__call__[  s~    r4==) 	2Abjjm.v.Bl1o00BJJ|BR01	2 t9>q6M
rS   Nr   ry   rS   rQ   r   r   P  s    		rS   r   r   r   r   r/   r   r
   r   r+   r   r   c                     d}|t        |       k7  r>t        | |   d      r| |   | ||dz    t        | |   d      r|dz  }|t        |       k7  r>| S )zFlatten a sequence in place.r0   __iter__r1   )r   hasattr)rP   ks     rQ   flatten_inplacer   y  s`    	AC=c!fj) VC1q5N c!fj)	Q C= JrS   c                 ^	   t        |dd      }|j                  }t        ||      }dg|dz
  z  }t        j                  |d      }t        t        |            }|j                  |       t        dd      ||<   t        j                  |j                        j                  |      }	|j                  ||        | |t        |j                                  g|i |}
t        j                  |
      }|s	 t!        |
       g }|r0|j%                  t        j                  |
      j&                         t	        |	t(              }|
|t        |      <   t        j*                  |	      }d}||k  r|dxx   dz  cc<   d}||   |	|   k\  r6|d|z
  kD  r.||dz
  xx   dz  cc<   d||<   |dz  }||   |	|   k\  r	|d|z
  kD  r.|j                  ||        | |t        |j                                  g|i |}
|
|t        |      <   |j%                  t        |
      j&                         |dz  }||k  rŐnt        |
dd      }
|j-                         }t        dd      g|
j                  z  ||<   |j                  ||       t        j*                  |	      }|	}t        |j                        }	|
j                  |	|<   |j%                  t        |
      j&                         t/        |	      }	t	        |	t(              }|
|t        t/        |j                                     <   d}||k  r|dxx   dz  cc<   d}||   ||   k\  r6|d|z
  kD  r.||dz
  xx   dz  cc<   d||<   |dz  }||   ||   k\  r	|d|z
  kD  r.|j                  ||       |j                  ||        | |t        |j                                  g|i |}
|
|t        t/        |j                                     <   |j%                  t        |
      j&                         |dz  }||k  rt        j&                  t        j                  |      j1                               }t3        |d	      st        j                  ||
      }|S t        ||
      }t5        j6                  |      |_        |S # t"        $ r d}Y w xY w)z0
    (This docstring should be overwritten)
    FT)copysubokr0   r1   ONre   rb   )r6   ndimrH   r\   rD   rO   rangeremoveslicer7   r^   takeputrN   tolistisscalarr   	TypeErrorr   r_   objectprodr   r   maxr   rr   default_fill_value
fill_value)func1drW   rV   rz   kwargsndindiindlistoutshaper   asscalardtypesoutarrNtotr   nj	holdshape
max_dtypesresults                        rQ   r   r     s;    %t
,C	Bb)D#a.C
SA59oGNN4D$AdGzz#))$))'2HEE'3
U188:&'
9$
9&
9C{{3H	H Fbjjo++,x( uSzwwx $hGqLGAq6Xa[(qAF|AE
a
AQ q6Xa[(qAF| EE'3U188:./A$A&AC!$F5:MM'#,,,-FA $h Ce40FFH$%&1$	gswwx 			?gcl(()"8,x(58u_QXXZ012$hGqLGAq6Yq\)QVAE
a
AQ q6Yq\)QV EE'3EE'3U188:./A$A&AC9<F5456MM'#,,,-FA $h "**V,0023J3 F*5 M z211&9Mw  	H	s   8R R,+R,c                 N   t        |      }|j                  }t        |      j                  dk(  r|f}|D ]m  }|dk  r||z   }||f} | | }|j                  |j                  k(  r|}2t        j                  ||      }|j                  |j                  k(  r|}dt        d       |S )z.
    (This docstring will be overwritten)
    r0   z7function is not returning an array of the correct shape)r7   r   r6   rr   expand_dims
ValueError)r   r`   axesvalNrW   rz   r   s           rQ   r   r     s     !*C	AT{1w 9!8t8DT{Dk88sxxC..d+Cxx388#  "8 9 99 JrS   Notesao  

    Examples
    --------
    >>> a = np.ma.arange(24).reshape(2,3,4)
    >>> a[:,0,1] = np.ma.masked
    >>> a[:,1,:] = np.ma.masked
    >>> a
    masked_array(
      data=[[[0, --, 2, 3],
             [--, --, --, --],
             [8, 9, 10, 11]],
            [[12, --, 14, 15],
             [--, --, --, --],
             [20, 21, 22, 23]]],
      mask=[[[False,  True, False, False],
             [ True,  True,  True,  True],
             [False, False, False, False]],
            [[False,  True, False, False],
             [ True,  True,  True,  True],
             [False, False, False, False]]],
      fill_value=999999)
    >>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
    masked_array(
      data=[[[46],
             [--],
             [124]]],
      mask=[[[False],
             [ True],
             [False]]],
      fill_value=999999)

    Tuple axis arguments to ufuncs are equivalent:

    >>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
    masked_array(
      data=[[[46],
             [--],
             [124]]],
      mask=[[[False],
             [ True],
             [False]]],
      fill_value=999999)
    )keepdimsc                >    t                t               }t         j                  d      |t        j
                  u ri }nd|i}|?  j                  fi |}|j                  j                   j                              }nt        |      }	t         j                  j                  t        j                  t        j                  f      r,t	        j                   j                  |	j                  d      }
n*t	        j                   j                  |	j                        }
 j                  |	j                  k7  rt        d      |	j                  t!         fdD              k7  rt#        d      |	j%                  t	        j&                              }	|	j)                  t!        fdt+         j                        D                    }	|t,        ur/|	 j.                   z  }	|	xj.                   j.                  z  c_         |	j0                  d|
d	|} t	        j2                   |	|

      j0                  fi ||z  }|rK|j                  |j                  k7  r.t	        j4                  ||j                        j7                         }||fS |S )a0  
    Return the weighted average of array over the given axis.

    Parameters
    ----------
    a : array_like
        Data to be averaged.
        Masked entries are not taken into account in the computation.
    axis : None or int or tuple of ints, optional
        Axis or axes along which to average `a`.  The default,
        `axis=None`, will average over all of the elements of the input array.
        If axis is a tuple of ints, averaging is performed on all of the axes
        specified in the tuple instead of a single axis or all the axes as
        before.
    weights : array_like, optional
        An array of weights associated with the values in `a`. Each value in
        `a` contributes to the average according to its associated weight.
        The array of weights must be the same shape as `a` if no axis is
        specified, otherwise the weights must have dimensions and shape
        consistent with `a` along the specified axis.
        If `weights=None`, then all data in `a` are assumed to have a
        weight equal to one.
        The calculation is::

            avg = sum(a * weights) / sum(weights)

        where the sum is over all included elements.
        The only constraint on the values of `weights` is that `sum(weights)`
        must not be 0.
    returned : bool, optional
        Flag indicating whether a tuple ``(result, sum of weights)``
        should be returned as output (True), or just the result (False).
        Default is False.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left
        in the result as dimensions with size one. With this option,
        the result will broadcast correctly against the original `a`.
        *Note:* `keepdims` will not work with instances of `numpy.matrix`
        or other classes whose methods do not support `keepdims`.

        .. versionadded:: 1.23.0

    Returns
    -------
    average, [sum_of_weights] : (tuple of) scalar or MaskedArray
        The average along the specified axis. When returned is `True`,
        return a tuple with the average as the first element and the sum
        of the weights as the second element. The return type is `np.float64`
        if `a` is of integer type and floats smaller than `float64`, or the
        input data-type, otherwise. If returned, `sum_of_weights` is always
        `float64`.

    Raises
    ------
    ZeroDivisionError
        When all weights along axis are zero. See `numpy.ma.average` for a
        version robust to this type of error.
    TypeError
        When `weights` does not have the same shape as `a`, and `axis=None`.
    ValueError
        When `weights` does not have dimensions and shape consistent with `a`
        along specified `axis`.

    Examples
    --------
    >>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
    >>> np.ma.average(a, weights=[3, 1, 0, 0])
    1.25

    >>> x = np.ma.arange(6.).reshape(3, 2)
    >>> x
    masked_array(
      data=[[0., 1.],
            [2., 3.],
            [4., 5.]],
      mask=False,
      fill_value=1e+20)
    >>> data = np.arange(8).reshape((2, 2, 2))
    >>> data
    array([[[0, 1],
            [2, 3]],
           [[4, 5],
            [6, 7]]])
    >>> np.ma.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]])
    masked_array(data=[3.4, 4.4],
             mask=[False, False],
       fill_value=1e+20)
    >>> np.ma.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]])
    Traceback (most recent call last):
        ...
    ValueError: Shape of weights must be consistent
    with shape of a along specified axis.

    >>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
    ...                                 returned=True)
    >>> avg
    masked_array(data=[2.6666666666666665, 3.6666666666666665],
                 mask=[False, False],
           fill_value=1e+20)

    With ``keepdims=True``, the following result has shape (3, 1).

    >>> np.ma.average(x, axis=1, keepdims=True)
    masked_array(
      data=[[0.5],
            [2.5],
            [4.5]],
      mask=False,
      fill_value=1e+20)
    rW   )argnamer   f8z;Axis must be specified when shapes of a and weights differ.c              3   <   K   | ]  }j                   |     y wri   )r^   ).0axr`   s     rQ   	<genexpr>zaverage.<locals>.<genexpr>  s     !="!''"+!=s   zIShape of weights must be consistent with shape of a along specified axis.c              3   4   K   | ]  \  }}|v r|nd   yw)r1   Nry   )r   r   srW   s      rQ   r   zaverage.<locals>.<genexpr>  s*      $E(-A +-*Q!%; $Es   )rW   r_   rb   ry   )r7   r;   rI   r   r\   _NoValuemeanr_   typer:   
issubclassintegerboolresult_typer^   r   rN   r   	transposeargsortreshape	enumeraterA   r[   rU   multiplybroadcast_tor   )r`   rW   weightsreturnedr   rX   keepdims_kwavgsclwgtresult_dtypes   ``         rQ   r   r      s2   ` 	
A
A#D!&&&A2;;!8,affT)[)iinnQWWT]+gaggllRZZ$9:>>!''399dCL>>!''399=L 77cii|  yyE!=!=== 78 8
 --

4 01C++e $E1:1771C$E E FC F?w-CHHHcggC4|C{C2bkk!S ,..1c$G:EGILM 99		!//#syy1668CCx
rS   c                     t        | d      s]t        j                  t        | d      ||||      }t	        |t        j
                        rd|j                  k  rt        |d      S |S t        | t        ||||      S )	a>	  
    Compute the median along the specified axis.

    Returns the median of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int, optional
        Axis along which the medians are computed. The default (None) is
        to compute the median along a flattened version of the array.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type will be cast if necessary.
    overwrite_input : bool, optional
        If True, then allow use of memory of input array (a) for
        calculations. The input array will be modified by the call to
        median. This will save memory when you do not need to preserve
        the contents of the input array. Treat the input as undefined,
        but it will probably be fully or partially sorted. Default is
        False. Note that, if `overwrite_input` is True, and the input
        is not already an `ndarray`, an error will be raised.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left
        in the result as dimensions with size one. With this option,
        the result will broadcast correctly against the input array.

        .. versionadded:: 1.10.0

    Returns
    -------
    median : ndarray
        A new array holding the result is returned unless out is
        specified, in which case a reference to out is returned.
        Return data-type is `float64` for integers and floats smaller than
        `float64`, or the input data-type, otherwise.

    See Also
    --------
    mean

    Notes
    -----
    Given a vector ``V`` with ``N`` non masked values, the median of ``V``
    is the middle value of a sorted copy of ``V`` (``Vs``) - i.e.
    ``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2``
    when ``N`` is even.

    Examples
    --------
    >>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
    >>> np.ma.median(x)
    1.5

    >>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
    >>> np.ma.median(x)
    2.5
    >>> np.ma.median(x, axis=-1, overwrite_input=True)
    masked_array(data=[2.0, 5.0],
                 mask=[False, False],
           fill_value=1e+20)

    r[   Tr   )rW   outoverwrite_inputr   r1   Fr   )r   r   rW   r   r   )
r   r\   r"   rE   rM   rG   r   r?   rJ   _median)r`   rW   r   r   r   rX   s         rQ   r"   r"     sv    D 1fIIgat,4') a$aff..HAGhTs$35 5rS   c                 &   t        j                  | j                  t         j                        rt         j                  }nd }|r;#| j                         j                  |       n$| j                  |       | nt        | |      dnt        j                        j                     dk(  rXt        d       gj                  z  }t        dd      |<   t        |      }t         j                  j                  |   |      S j                  dk(  r-t        t              d      \  }}||z   dz
  |dz    }t        j                  j                  t         j                        rhj                   dkD  rY|j#                  |      }	|st        j$                  |	dd	|
      }	t         j&                  j(                  j+                  |	      }	n|j                  |      }	t         j                  j-                  |	      r>t        j.                  j0                        st         j                  j3                        S |	S t        d      }
|
dz  }|
dz  dk(  }t        j4                  |||dz
        }t        j6                  ||g      }t        j8                  |      }fd} ||       t        j                  j                  t         j                        r|t         j                  j#                  ||      }	t        j$                  |	j:                  dd|	j:                  
       t         j&                  j(                  j+                  |	      }	|	S t         j                  j                  ||      }	|	S )N)r   )rW   r   r0   )rW   r   r1      )r   g       @safe)castingr   TrW   r   rW   c                    t         j                  j                  |       rlt        j                  j                  d       | j                  z  }t         j                  j                        | j                  |<   d| j                  |<   y y )NTr   F)r\   rr   	is_maskedallr[   minimum_fill_valuedata)r   repasortedrW   s     rQ   replace_maskedz_median.<locals>.replace_maskedS  se    
 55??1FF7<<dTBBaffLC%%227;AFF3KAFF3K rS   unsafe)r\   
issubdtyper_   inexactinfravelrC   rH   r   r^   r   rN   rr   r   divmodr:   sizerU   true_dividelib_utils_impl_median_nancheckr   r   r[   r   wherer8   take_along_axisr   )r`   rW   r   r   r   indexeridxoddmidr   countshllhlow_highr   r   s    `              @rQ   r   r     s    
}}QWWbjj)VV

<ggiGLLJL/FFF4Gqt
;|#D',,7}}Ta ;-',,.a.uuzz''*3z??||q%.!,ScCi!mC!G,==

3q8HC ANN1b&cB""33GQEAS!A
 55??1bffW\\&:55++G4475F!A 1*/C
a1A	1D	)B !!'2D9H  8	}}W]]BJJ/EEIIhTsI3
qvvr8@FF//DA H EEJJxdJ4HrS   c           
         t        |       } t        |       }|t        t        | j                              }nt        || j                        }|t        u s|j                         s| j                  S |j                         rt        g       S | j                  }|D ]i  }t        t        t        |            t        t        |dz   | j                              z         }|t        d      f|z  |j                  |       fz      }k |S )a"  Suppress slices from multiple dimensions which contain masked values.

    Parameters
    ----------
    x : array_like, MaskedArray
        The array to operate on. If not a MaskedArray instance (or if no array
        elements are masked), `x` is interpreted as a MaskedArray with `mask`
        set to `nomask`.
    axis : tuple of ints or int, optional
        Which dimensions to suppress slices from can be configured with this
        parameter.
        - If axis is a tuple of ints, those are the axes to suppress slices from.
        - If axis is an int, then that is the only axis to suppress slices from.
        - If axis is None, all axis are selected.

    Returns
    -------
    compress_array : ndarray
        The compressed array.

    Examples
    --------
    >>> arr = [[1, 2], [3, 4]]
    >>> mask = [[0, 1], [0, 0]]
    >>> x = np.ma.array(arr, mask=mask)
    >>> np.ma.compress_nd(x, axis=0)
    array([[3, 4]])
    >>> np.ma.compress_nd(x, axis=1)
    array([[1],
           [3]])
    >>> np.ma.compress_nd(x)
    array([[3]])

    Nr1   r   )r7   r;   rN   r   r   rI   rA   any_datar   nxarrayrO   r   )r   rW   rX   r   r   r   s         rQ   r   r   k  s    F 	
A
A|U166]##D!&&1 	F{!%%'wwuuwr{77D >T%)_tE"q&!&&,A'BBCU4[N2%!%%T%*:):(<<=> KrS   c                 b    t        |       j                  dk7  rt        d      t        | |      S )a  
    Suppress the rows and/or columns of a 2-D array that contain
    masked values.

    The suppression behavior is selected with the `axis` parameter.

    - If axis is None, both rows and columns are suppressed.
    - If axis is 0, only rows are suppressed.
    - If axis is 1 or -1, only columns are suppressed.

    Parameters
    ----------
    x : array_like, MaskedArray
        The array to operate on.  If not a MaskedArray instance (or if no array
        elements are masked), `x` is interpreted as a MaskedArray with
        `mask` set to `nomask`. Must be a 2D array.
    axis : int, optional
        Axis along which to perform the operation. Default is None.

    Returns
    -------
    compressed_array : ndarray
        The compressed array.

    Examples
    --------
    >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
    ...                                                   [1, 0, 0],
    ...                                                   [0, 0, 0]])
    >>> x
    masked_array(
      data=[[--, 1, 2],
            [--, 4, 5],
            [6, 7, 8]],
      mask=[[ True, False, False],
            [ True, False, False],
            [False, False, False]],
      fill_value=999999)

    >>> np.ma.compress_rowcols(x)
    array([[7, 8]])
    >>> np.ma.compress_rowcols(x, 0)
    array([[6, 7, 8]])
    >>> np.ma.compress_rowcols(x, 1)
    array([[1, 2],
           [4, 5],
           [7, 8]])

    r   z*compress_rowcols works for 2D arrays only.r   )r7   r   NotImplementedErrorr   )r   rW   s     rQ   r   r     s.    d qz!!"NOOqt$$rS   c                 d    t        |       } | j                  dk7  rt        d      t        | d      S )ab  
    Suppress whole rows of a 2-D array that contain masked values.

    This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see
    `compress_rowcols` for details.

    Parameters
    ----------
    x : array_like, MaskedArray
        The array to operate on. If not a MaskedArray instance (or if no array
        elements are masked), `x` is interpreted as a MaskedArray with
        `mask` set to `nomask`. Must be a 2D array.

    Returns
    -------
    compressed_array : ndarray
        The compressed array.

    See Also
    --------
    compress_rowcols

    Examples
    --------
    >>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
    ...                                                   [1, 0, 0],
    ...                                                   [0, 0, 0]])
    >>> np.ma.compress_rows(a)
    array([[6, 7, 8]])
    
    r   z'compress_rows works for 2D arrays only.r0   r7   r   r  r   r`   s    rQ   r   r     s2    @ 	
Avv{!"KLLAq!!rS   c                 d    t        |       } | j                  dk7  rt        d      t        | d      S )a  
    Suppress whole columns of a 2-D array that contain masked values.

    This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see
    `compress_rowcols` for details.

    Parameters
    ----------
    x : array_like, MaskedArray
        The array to operate on.  If not a MaskedArray instance (or if no array
        elements are masked), `x` is interpreted as a MaskedArray with
        `mask` set to `nomask`. Must be a 2D array.

    Returns
    -------
    compressed_array : ndarray
        The compressed array.

    See Also
    --------
    compress_rowcols

    Examples
    --------
    >>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
    ...                                                   [1, 0, 0],
    ...                                                   [0, 0, 0]])
    >>> np.ma.compress_cols(a)
    array([[1, 2],
           [4, 5],
           [7, 8]])

    r   z'compress_cols works for 2D arrays only.r1   r  r  s    rQ   r   r     s2    D 	
Avv{!"KLLAq!!rS   c                    t        | d      } | j                  dk7  rt        d      t        |       }|t        u s|j                         s| S |j                         }| j                  j                         | _        |st        | t        j                  |d         <   |dv r#t        | ddt        j                  |d         f<   | S )	a  
    Mask rows and/or columns of a 2D array that contain masked values.

    Mask whole rows and/or columns of a 2D array that contain
    masked values.  The masking behavior is selected using the
    `axis` parameter.

      - If `axis` is None, rows *and* columns are masked.
      - If `axis` is 0, only rows are masked.
      - If `axis` is 1 or -1, only columns are masked.

    Parameters
    ----------
    a : array_like, MaskedArray
        The array to mask.  If not a MaskedArray instance (or if no array
        elements are masked), the result is a MaskedArray with `mask` set
        to `nomask` (False). Must be a 2D array.
    axis : int, optional
        Axis along which to perform the operation. If None, applies to a
        flattened version of the array.

    Returns
    -------
    a : MaskedArray
        A modified version of the input array, masked depending on the value
        of the `axis` parameter.

    Raises
    ------
    NotImplementedError
        If input array `a` is not 2D.

    See Also
    --------
    mask_rows : Mask rows of a 2D array that contain masked values.
    mask_cols : Mask cols of a 2D array that contain masked values.
    masked_where : Mask where a condition is met.

    Notes
    -----
    The input array's mask is modified by this function.

    Examples
    --------
    >>> a = np.zeros((3, 3), dtype=int)
    >>> a[1, 1] = 1
    >>> a
    array([[0, 0, 0],
           [0, 1, 0],
           [0, 0, 0]])
    >>> a = np.ma.masked_equal(a, 1)
    >>> a
    masked_array(
      data=[[0, 0, 0],
            [0, --, 0],
            [0, 0, 0]],
      mask=[[False, False, False],
            [False,  True, False],
            [False, False, False]],
      fill_value=1)
    >>> np.ma.mask_rowcols(a)
    masked_array(
      data=[[0, --, 0],
            [--, --, --],
            [0, --, 0]],
      mask=[[False,  True, False],
            [ True,  True,  True],
            [False,  True, False]],
      fill_value=1)

    Fr   r   z&mask_rowcols works for 2D arrays only.r0   )Nr1   r   Nr1   )r6   r   r  r;   rA   r  nonzerore   r   r>   r\   r,   )r`   rW   rX   	maskedvals       rQ   r   r   )  s    P 	auAvv{!"JKK
AF{!%%'		IggllnAG%+"))IaL
!"}(.!RYYy|$
$%HrS   c                 v    |t         j                  urt        j                  dt        d       t        | d      S )a  
    Mask rows of a 2D array that contain masked values.

    This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0.

    See Also
    --------
    mask_rowcols : Mask rows and/or columns of a 2D array.
    masked_where : Mask where a condition is met.

    Examples
    --------
    >>> a = np.zeros((3, 3), dtype=int)
    >>> a[1, 1] = 1
    >>> a
    array([[0, 0, 0],
           [0, 1, 0],
           [0, 0, 0]])
    >>> a = np.ma.masked_equal(a, 1)
    >>> a
    masked_array(
      data=[[0, 0, 0],
            [0, --, 0],
            [0, 0, 0]],
      mask=[[False, False, False],
            [False,  True, False],
            [False, False, False]],
      fill_value=1)

    >>> np.ma.mask_rows(a)
    masked_array(
      data=[[0, 0, 0],
            [--, --, --],
            [0, 0, 0]],
      mask=[[False, False, False],
            [ True,  True,  True],
            [False, False, False]],
      fill_value=1)

    TThe axis argument has always been ignored, in future passing it will raise TypeErrorr   
stacklevelr0   r\   r   warningswarnDeprecationWarningr   r`   rW   s     rQ   r   r     s9    R 2;; 	#$61	F 1rS   c                 v    |t         j                  urt        j                  dt        d       t        | d      S )a  
    Mask columns of a 2D array that contain masked values.

    This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1.

    See Also
    --------
    mask_rowcols : Mask rows and/or columns of a 2D array.
    masked_where : Mask where a condition is met.

    Examples
    --------
    >>> a = np.zeros((3, 3), dtype=int)
    >>> a[1, 1] = 1
    >>> a
    array([[0, 0, 0],
           [0, 1, 0],
           [0, 0, 0]])
    >>> a = np.ma.masked_equal(a, 1)
    >>> a
    masked_array(
      data=[[0, 0, 0],
            [0, --, 0],
            [0, 0, 0]],
      mask=[[False, False, False],
            [False,  True, False],
            [False, False, False]],
      fill_value=1)
    >>> np.ma.mask_cols(a)
    masked_array(
      data=[[0, --, 0],
            [0, --, 0],
            [0, --, 0]],
      mask=[[False,  True, False],
            [False,  True, False],
            [False,  True, False]],
      fill_value=1)

    r  r   r  r1   r  r#  s     rQ   r   r     s9    P 2;; 	#$61	F 1rS   c                     t        j                  |       j                  } | dd | dd z
  }|g}||j                  d|       ||j	                  |       t        |      dk7  rt        |      }|S )a  
    Compute the differences between consecutive elements of an array.

    This function is the equivalent of `numpy.ediff1d` that takes masked
    values into account, see `numpy.ediff1d` for details.

    See Also
    --------
    numpy.ediff1d : Equivalent function for ndarrays.

    Examples
    --------
    >>> arr = np.ma.array([1, 2, 4, 7, 0])
    >>> np.ma.ediff1d(arr)
    masked_array(data=[ 1,  2,  3, -7],
                 mask=False,
           fill_value=999999)

    r1   Nr   r0   )rr   
asanyarrayflatinsertr   r   r   )rV   to_endto_beginedr   s        rQ   r   r     sw    ( --

!
!C	QR3s8	BTFa"f
6{a F^IrS   c                     t        j                  | ||      }t        |t              r3t	        |      }|d   j                  t              |d<   t        |      }|S |j                  t              }|S )a  
    Finds the unique elements of an array.

    Masked values are considered the same element (masked). The output array
    is always a masked array. See `numpy.unique` for more details.

    See Also
    --------
    numpy.unique : Equivalent function for ndarrays.

    Examples
    --------
    >>> a = [1, 2, 1000, 2, 3]
    >>> mask = [0, 0, 1, 0, 0]
    >>> masked_a = np.ma.masked_array(a, mask)
    >>> masked_a
    masked_array(data=[1, 2, --, 2, 3],
                mask=[False, False,  True, False, False],
        fill_value=999999)
    >>> np.ma.unique(masked_a)
    masked_array(data=[1, 2, 3, --],
                mask=[False, False, False,  True],
        fill_value=999999)
    >>> np.ma.unique(masked_a, return_index=True)
    (masked_array(data=[1, 2, 3, --],
                mask=[False, False, False,  True],
        fill_value=999999), array([0, 1, 4, 2]))
    >>> np.ma.unique(masked_a, return_inverse=True)
    (masked_array(data=[1, 2, 3, --],
                mask=[False, False, False,  True],
        fill_value=999999), array([0, 1, 3, 1, 2]))
    >>> np.ma.unique(masked_a, return_index=True, return_inverse=True)
    (masked_array(data=[1, 2, 3, --],
                mask=[False, False, False,  True],
        fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2]))
    )return_indexreturn_inverser0   )r\   r,   rM   rN   rO   rd   r3   )ar1r-  r.  outputs       rQ   r,   r,     sk    J YYs$0&46F &% f1INN;/q	v M [)MrS   c                     |rt        j                  | |f      }n)t        j                  t        |       t        |      f      }|j                          |dd |dd |dd k(     S )a>  
    Returns the unique elements common to both arrays.

    Masked values are considered equal one to the other.
    The output is always a masked array.

    See `numpy.intersect1d` for more details.

    See Also
    --------
    numpy.intersect1d : Equivalent function for ndarrays.

    Examples
    --------
    >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
    >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
    >>> np.ma.intersect1d(x, y)
    masked_array(data=[1, 3, --],
                 mask=[False, False,  True],
           fill_value=999999)

    Nr   r1   )rr   r8   r,   rC   )r/  ar2assume_uniqueauxs       rQ   r   r   >  sa    . nnc3Z( nnfSk6#;78HHJs8CGs3Bx'((rS   c                 (   |st        |       } t        |      }t        j                  | |f      }|j                  dk(  r|S |j	                          |j                         }t        j                  dg|dd |dd k7  dgf      }|dd |dd k(  }||   S )a  
    Set exclusive-or of 1-D arrays with unique elements.

    The output is always a masked array. See `numpy.setxor1d` for more details.

    See Also
    --------
    numpy.setxor1d : Equivalent function for ndarrays.

    Examples
    --------
    >>> ar1 = np.ma.array([1, 2, 3, 2, 4])
    >>> ar2 = np.ma.array([2, 3, 5, 7, 5])
    >>> np.ma.setxor1d(ar1, ar2)
    masked_array(data=[1, 4, 5, 7],
                 mask=False,    
           fill_value=999999)

    r0   Tr1   Nr   )r,   rr   r8   r   rC   r9   )r/  r2  r3  r4  auxfflagflag2s          rQ   r*   r*   ^  s    ( SkSk
..#s
$C
xx1}
HHJ::<D>>D6DHSb	$9TFCDD!"Xcr"Eu:rS   c                 T   |st        | d      \  } }t        |      }t        j                  | |f      }|j                  d      }||   }|r|dd |dd k7  }n|dd |dd k(  }t        j                  ||gf      }	|j                  d      dt	        |        }
|r|	|
   S |	|
      S )a  
    Test whether each element of an array is also present in a second
    array.

    The output is always a masked array. See `numpy.in1d` for more details.

    We recommend using :func:`isin` instead of `in1d` for new code.

    See Also
    --------
    isin       : Version of this function that preserves the shape of ar1.
    numpy.in1d : Equivalent function for ndarrays.

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    >>> ar1 = np.ma.array([0, 1, 2, 5, 0])
    >>> ar2 = [0, 2]
    >>> np.ma.in1d(ar1, ar2)
    masked_array(data=[ True, False,  True, False,  True],
                 mask=False,
           fill_value=True)

    T)r.  	mergesort)kindr1   Nr   )r,   rr   r8   r   r   )r/  r2  r3  invertrev_idxarordersarbool_arr7  indxs              rQ   r   r     s    8 c$7WSk	c
	#B JJKJ(E
U)Cqr7c#2h&qr7c#2h&>>7VH-.D==k=*9CH5DDzDz'""rS   c                 |    t        j                  |       } t        | |||      j                  | j                        S )a  
    Calculates `element in test_elements`, broadcasting over
    `element` only.

    The output is always a masked array of the same shape as `element`.
    See `numpy.isin` for more details.

    See Also
    --------
    in1d       : Flattened version of this function.
    numpy.isin : Equivalent function for ndarrays.

    Notes
    -----
    .. versionadded:: 1.13.0

    Examples
    --------
    >>> element = np.ma.array([1, 2, 3, 4, 5, 6])
    >>> test_elements = [0, 2]
    >>> np.ma.isin(element, test_elements)
    masked_array(data=[False,  True, False, False, False, False],
                 mask=False,
           fill_value=True)

    r3  r<  )rr   r7   r   r   r^   )elementtest_elementsr3  r<  s       rQ   r   r     s6    6 jj!Gm&ww}}56rS   c                 F    t        t        j                  | |fd            S )a  
    Union of two arrays.

    The output is always a masked array. See `numpy.union1d` for more details.

    See Also
    --------
    numpy.union1d : Equivalent function for ndarrays.

    Examples
    --------
    >>> ar1 = np.ma.array([1, 2, 3, 4])
    >>> ar2 = np.ma.array([3, 4, 5, 6])
    >>> np.ma.union1d(ar1, ar2)
    masked_array(data=[1, 2, 3, 4, 5, 6],
             mask=False,
       fill_value=999999)

    Nr   )r,   rr   r8   )r/  r2  s     rQ   r-   r-     s    ( "..#s$788rS   c                     |r$t        j                  |       j                         } nt        |       } t        |      }| t	        | |dd         S )a  
    Set difference of 1D arrays with unique elements.

    The output is always a masked array. See `numpy.setdiff1d` for more
    details.

    See Also
    --------
    numpy.setdiff1d : Equivalent function for ndarrays.

    Examples
    --------
    >>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
    >>> np.ma.setdiff1d(x, [1, 2])
    masked_array(data=[3, --],
                 mask=[False,  True],
           fill_value=999999)

    TrD  )rr   r7   r   r,   r   )r/  r2  r3  s      rQ   r)   r)     sE    ( jjo##%SkSktCD>??rS   Tc                    t        j                  | ddt              } t        j                  |       }|s|j	                         rt        d      | j                  d   dk(  rd}t        t        |            }d|z
  }|rt        d      df}ndt        d      f}|*t        j                  |      j                  t              }nt        |ddt        	      }t        j                  |      }|s|j	                         rt        d      |j	                         s|j	                         rW|j                  | j                  k(  r>t        j                  ||      }	|	t        ur |	x}x| _        x|_        }d| _        d|_        t        j"                  | |f|      } t        j                  t        j"                  ||f|            j                  t              }| | j%                  |
      |   z  } | ||fS )z_
    Private function for the computation of covariance and correlation
    coefficients.

    r   T)ndminr   r_   zCannot process masked data.r0   r1   NF)r   rJ  r_   r   )rr   r6   floatr<   r  r   r^   intr   r   r\   logical_notastype
logical_orrA   re   _sharedmaskr8   r   )
r   yrowvarallow_maskedxmaskrW   tupxnotmaskymaskcommon_masks
             rQ   
_covhelperrY    s    	!$e4AOOAEEIIK677wwqzQfFv:DT{D!U4[!y>>%(//4!%q6"		:;;99;%))+ww!''! mmE59f,8CCECAGCag$)AM$)AMNNAq64(>>"..%"FGNNsSV	S	!!Ax  rS   c                    ||t        |      k7  rt        d      ||rd}nd}t        | |||      \  } }}|s_t        j                  |j
                  |      dz  |z
  }t	        | j
                  | j                         d      |z  j                         }|S t        j                  ||j
                        dz  |z
  }t	        | | j
                  j                         d      |z  j                         }|S )aI
  
    Estimate the covariance matrix.

    Except for the handling of missing data this function does the same as
    `numpy.cov`. For more details and examples, see `numpy.cov`.

    By default, masked values are recognized as such. If `x` and `y` have the
    same shape, a common mask is allocated: if ``x[i,j]`` is masked, then
    ``y[i,j]`` will also be masked.
    Setting `allow_masked` to False will raise an exception if values are
    missing in either of the input arrays.

    Parameters
    ----------
    x : array_like
        A 1-D or 2-D array containing multiple variables and observations.
        Each row of `x` represents a variable, and each column a single
        observation of all those variables. Also see `rowvar` below.
    y : array_like, optional
        An additional set of variables and observations. `y` has the same
        shape as `x`.
    rowvar : bool, optional
        If `rowvar` is True (default), then each row represents a
        variable, with observations in the columns. Otherwise, the relationship
        is transposed: each column represents a variable, while the rows
        contain observations.
    bias : bool, optional
        Default normalization (False) is by ``(N-1)``, where ``N`` is the
        number of observations given (unbiased estimate). If `bias` is True,
        then normalization is by ``N``. This keyword can be overridden by
        the keyword ``ddof`` in numpy versions >= 1.5.
    allow_masked : bool, optional
        If True, masked values are propagated pair-wise: if a value is masked
        in `x`, the corresponding value is masked in `y`.
        If False, raises a `ValueError` exception when some values are missing.
    ddof : {None, int}, optional
        If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
        the number of observations; this overrides the value implied by
        ``bias``. The default value is ``None``.

        .. versionadded:: 1.5

    Raises
    ------
    ValueError
        Raised if some values are missing and `allow_masked` is False.

    See Also
    --------
    numpy.cov

    Examples
    --------
    >>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1])
    >>> y = np.ma.array([[1, 0], [0, 1]], mask=[0, 0, 1, 1])
    >>> np.ma.cov(x, y)
    masked_array(
    data=[[--, --, --, --],
          [--, --, --, --],
          [--, --, --, --],
          [--, --, --, --]],
    mask=[[ True,  True,  True,  True],
          [ True,  True,  True,  True],
          [ True,  True,  True,  True],
          [ True,  True,  True,  True]],
    fill_value=1e+20,
    dtype=float64)
    
    zddof must be an integerr0   r1         ?Fstrict)rL  r   rY  r\   r   Tconjsqueeze)	r   rQ  rR  biasrS  ddofrV  factr   s	            rQ   r   r   8  s    N DCI-233|DD&q!V\BQ&vvhjj(+b047acc1668E2T9BBD M vvh

+b047aE2T9BBDMrS   c           
         d}|t         j                  us|t         j                  urt        j                  |t        d       t        | |||      \  } }}|s[t        j                  |j                  |      dz  }t        | j                  | j                         d      |z  j                         }	nZt        j                  ||j                        dz  }t        | | j                  j                         d      |z  j                         }		 t        j                  |	      }
|j                         r8t        j                  t        j                  j!                  |
|
            }|	|z  S t#        |
      }d|_        | j&                  d|z
     }|rt)        |dz
        D ]  }t)        |dz   |      D ]l  }t+        t-        | |   | |   f            j/                  d      }t        j                  t        j                  j1                  |            x|||f<   |||f<   n  |	|z  S t)        |dz
        D ]  }t)        |dz   |      D ]t  }t+        t-        | d	d	|f   | d	d	|f   f            j/                  d      }t        j                  t        j                  j1                  |            x|||f<   |||f<   v  |	|z  S # t        $ r Y yw xY w)
aN  
    Return Pearson product-moment correlation coefficients.

    Except for the handling of missing data this function does the same as
    `numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`.

    Parameters
    ----------
    x : array_like
        A 1-D or 2-D array containing multiple variables and observations.
        Each row of `x` represents a variable, and each column a single
        observation of all those variables. Also see `rowvar` below.
    y : array_like, optional
        An additional set of variables and observations. `y` has the same
        shape as `x`.
    rowvar : bool, optional
        If `rowvar` is True (default), then each row represents a
        variable, with observations in the columns. Otherwise, the relationship
        is transposed: each column represents a variable, while the rows
        contain observations.
    bias : _NoValue, optional
        Has no effect, do not use.

        .. deprecated:: 1.10.0
    allow_masked : bool, optional
        If True, masked values are propagated pair-wise: if a value is masked
        in `x`, the corresponding value is masked in `y`.
        If False, raises an exception.  Because `bias` is deprecated, this
        argument needs to be treated as keyword only to avoid a warning.
    ddof : _NoValue, optional
        Has no effect, do not use.

        .. deprecated:: 1.10.0

    See Also
    --------
    numpy.corrcoef : Equivalent function in top-level NumPy module.
    cov : Estimate the covariance matrix.

    Notes
    -----
    This function accepts but discards arguments `bias` and `ddof`.  This is
    for backwards compatibility with previous versions of this function.  These
    arguments had no effect on the return values of the function and can be
    safely ignored in this and previous versions of numpy.

    Examples
    --------
    >>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1])
    >>> np.ma.corrcoef(x)
    masked_array(
      data=[[--, --],
            [--, --]],
      mask=[[ True,  True],
            [ True,  True]],
      fill_value=1e+20,
      dtype=float64)

    z/bias and ddof have no effect and are deprecatedr   r  r[  Fr\  r1   r   N)r\   r   r   r!  r"  rY  r   r^  r_  r`  rr   diagonalr   r   sqrtr   outerr   rP  r^   r   r   r/   varreduce)r   rQ  rR  ra  rS  rb  msgrV  rc  cdiag_denomr   r   r   _xs                   rQ   r   r     s   z <C2;;$bkk"9c-!<&q!V\BQ&vvhjj(+b0affhu-4==?vvh

+b0ACCHHJu-4==?{{1~ ||~**467  v: $"GGAJ1q5\ Rq1ua RA"61Q41,#78<<!<DB24''"++:L:LR:P2QQF1a4L6!Q$<RR v: 1q5\ Rq1ua RA""AadGQq!tW#5688; 24''"++:L:LR:P2QQF1a4L6!Q$<RR
 v:)  s   K 	KKc                   F     e Zd ZdZ ee      Ze fd       Z fdZ xZ	S )MAxisConcatenatorz
    Translate slice objects to concatenation along an axis.

    For documentation on usage, see `mr_class`.

    See Also
    --------
    mr_class

    c                 h    t         |   |j                  d      }t        ||j                        S )NFr   rZ   )supermakematr   r6   r[   )clsrV   r   	__class__s      rQ   rs  zMAxisConcatenator.makemat  s,     wsxxe4T))rS   c                 X    t        |t              rt        d      t        |   |      S )NzUnavailable for masked array.)rM   strr4   rr  __getitem__)rm   keyru  s     rQ   rx  zMAxisConcatenator.__getitem__  s)    c39::w"3''rS   )
rj   r}   r~   rl   staticmethodr8   classmethodrs  rx  __classcell__)ru  s   @rQ   rp  rp    s0    	 {+K* *( (rS   rp  c                       e Zd ZdZd Zy)mr_classac  
    Translate slice objects to concatenation along the first axis.

    This is the masked array version of `r_`.

    See Also
    --------
    r_

    Examples
    --------
    >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
    masked_array(data=[1, 2, 3, ..., 4, 5, 6],
                 mask=False,
           fill_value=999999)

    c                 0    t         j                  | d       y )Nr0   )rp  ro   )rm   s    rQ   ro   zmr_class.__init__)  s    ""4+rS   N)rj   r}   r~   rl   ro   ry   rS   rQ   r~  r~    s    ",rS   r~  c              #      K   t        t        j                  |       t        |       j                        D ]  \  }}|s| |r|d   t
        f  yw)a  
    Multidimensional index iterator.

    Return an iterator yielding pairs of array coordinates and values,
    skipping elements that are masked. With `compressed=False`,
    `ma.masked` is yielded as the value of masked elements. This
    behavior differs from that of `numpy.ndenumerate`, which yields the
    value of the underlying data array.

    Notes
    -----
    .. versionadded:: 1.23.0

    Parameters
    ----------
    a : array_like
        An array with (possibly) masked elements.
    compressed : bool, optional
        If True (default), masked elements are skipped.

    See Also
    --------
    numpy.ndenumerate : Equivalent function ignoring any mask.

    Examples
    --------
    >>> a = np.ma.arange(9).reshape((3, 3))
    >>> a[1, 0] = np.ma.masked
    >>> a[1, 2] = np.ma.masked
    >>> a[2, 1] = np.ma.masked
    >>> a
    masked_array(
      data=[[0, 1, 2],
            [--, 4, --],
            [6, --, 8]],
      mask=[[False, False, False],
            [ True, False,  True],
            [False,  True, False]],
      fill_value=999999)
    >>> for index, x in np.ma.ndenumerate(a):
    ...     print(index, x)
    (0, 0) 0
    (0, 1) 1
    (0, 2) 2
    (1, 1) 4
    (2, 0) 6
    (2, 2) 8

    >>> for index, x in np.ma.ndenumerate(a, compressed=False):
    ...     print(index, x)
    (0, 0) 0
    (0, 1) 1
    (0, 2) 2
    (1, 0) --
    (1, 1) 4
    (1, 2) --
    (2, 0) 6
    (2, 1) --
    (2, 2) 8
    r0   N)zipr\   r$   r<   r'  r>   )r`   
compresseditr[   s       rQ   r$   r$   3  sO     z q)<?+?+?@  DHQ%-	 s   AAAc                     t        |       }|t        u st        j                  |      s$t        j                  d| j
                  dz
  g      S t        j                  |       }t        |      dkD  r|ddg   S y)a  
    Find the indices of the first and last unmasked values.

    Expects a 1-D `MaskedArray`, returns None if all values are masked.

    Parameters
    ----------
    a : array_like
        Input 1-D `MaskedArray`

    Returns
    -------
    edges : ndarray or None
        The indices of first and last non-masked value in the array.
        Returns None if all values are masked.

    See Also
    --------
    flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges
    clump_masked, clump_unmasked

    Notes
    -----
    Only accepts 1-D arrays.

    Examples
    --------
    >>> a = np.ma.arange(10)
    >>> np.ma.flatnotmasked_edges(a)
    array([0, 9])

    >>> mask = (a < 3) | (a > 8) | (a == 5)
    >>> a[mask] = np.ma.masked
    >>> np.array(a[~a.mask])
    array([3, 4, 6, 7, 8])

    >>> np.ma.flatnotmasked_edges(a)
    array([3, 8])

    >>> a[:] = np.ma.masked
    >>> print(np.ma.flatnotmasked_edges(a))
    None

    r0   r1   r   N)r;   rA   r\   r  r6   r   flatnonzeror   )r`   rX   unmaskeds      rQ   r   r   w  sh    Z 	
AF{"&&)xxAFFQJ((~~qb!H
8}qB  rS   c           	      @   t        |       } || j                  dk(  rt        |       S t        |       }t	        t        j                  | j                        t        j                   |g| j                  z              }t        t        | j                        D cg c]$  }||   j                  |      j                         & c}      t        t        | j                        D cg c]$  }||   j                  |      j                         & c}      gS c c}w c c}w )a_  
    Find the indices of the first and last unmasked values along an axis.

    If all values are masked, return None.  Otherwise, return a list
    of two tuples, corresponding to the indices of the first and last
    unmasked values respectively.

    Parameters
    ----------
    a : array_like
        The input array.
    axis : int, optional
        Axis along which to perform the operation.
        If None (default), applies to a flattened version of the array.

    Returns
    -------
    edges : ndarray or list
        An array of start and end indexes if there are any masked data in
        the array. If there are no masked data in the array, `edges` is a
        list of the first and last index.

    See Also
    --------
    flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous
    clump_masked, clump_unmasked

    Examples
    --------
    >>> a = np.arange(9).reshape((3, 3))
    >>> m = np.zeros_like(a)
    >>> m[1:, 1:] = 1

    >>> am = np.ma.array(a, mask=m)
    >>> np.array(am[~am.mask])
    array([0, 1, 2, 3, 6])

    >>> np.ma.notmasked_edges(am)
    array([0, 6])

    r1   rZ   )r7   r   r   r<   r6   r\   indicesr^   rN   r   minr  r   )r`   rW   rX   r  r   s        rQ   r&   r&     s    T 	
A|qvv{"1%%QA


177#"**aS166\*B
CC%-HQ3q6::d#..0HI%-HQ3q6::d#..0HIM MHHs   )D%)D
c                 *   t        |       }|t        u rt        d| j                        gS d}g }t	        j
                  |j                               D ]>  \  }}t        t        |            }|s|j                  t        |||z                ||z  }@ |S )a  
    Find contiguous unmasked data in a masked array.

    Parameters
    ----------
    a : array_like
        The input array.

    Returns
    -------
    slice_list : list
        A sorted sequence of `slice` objects (start index, end index).

        .. versionchanged:: 1.15.0
            Now returns an empty list instead of None for a fully masked array

    See Also
    --------
    flatnotmasked_edges, notmasked_contiguous, notmasked_edges
    clump_masked, clump_unmasked

    Notes
    -----
    Only accepts 2-D arrays at most.

    Examples
    --------
    >>> a = np.ma.arange(10)
    >>> np.ma.flatnotmasked_contiguous(a)
    [slice(0, 10, None)]

    >>> mask = (a < 3) | (a > 8) | (a == 5)
    >>> a[mask] = np.ma.masked
    >>> np.array(a[~a.mask])
    array([3, 4, 6, 7, 8])

    >>> np.ma.flatnotmasked_contiguous(a)
    [slice(3, 5, None), slice(6, 9, None)]
    >>> a[:] = np.ma.masked
    >>> np.ma.flatnotmasked_contiguous(a)
    []

    r0   )
r;   rA   r   r   	itertoolsgroupbyr   r   rO   r   )r`   rX   r   r   r   gr   s          rQ   r   r     s    X 	
AF{a !!	AF##AGGI. AQLMM%1q5/*	Q	
 MrS   c           	      B   t        |       } | j                  }|dkD  rt        d      ||dk(  rt        |       S g }|dz   dz  }ddg}t	        dd      ||<   t        | j                  |         D ]-  }|||<   |j                  t        | t        |                      / |S )a  
    Find contiguous unmasked data in a masked array along the given axis.

    Parameters
    ----------
    a : array_like
        The input array.
    axis : int, optional
        Axis along which to perform the operation.
        If None (default), applies to a flattened version of the array, and this
        is the same as `flatnotmasked_contiguous`.

    Returns
    -------
    endpoints : list
        A list of slices (start and end indexes) of unmasked indexes
        in the array.

        If the input is 2d and axis is specified, the result is a list of lists.

    See Also
    --------
    flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
    clump_masked, clump_unmasked

    Notes
    -----
    Only accepts 2-D arrays at most.

    Examples
    --------
    >>> a = np.arange(12).reshape((3, 4))
    >>> mask = np.zeros_like(a)
    >>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
    >>> ma = np.ma.array(a, mask=mask)
    >>> ma
    masked_array(
      data=[[0, --, 2, 3],
            [--, --, --, 7],
            [8, --, --, 11]],
      mask=[[False,  True, False, False],
            [ True,  True,  True, False],
            [False,  True,  True, False]],
      fill_value=999999)
    >>> np.array(ma[~ma.mask])
    array([ 0,  2,  3,  7, 8, 11])

    >>> np.ma.notmasked_contiguous(ma)
    [slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]

    >>> np.ma.notmasked_contiguous(ma, axis=0)
    [[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]]

    >>> np.ma.notmasked_contiguous(ma, axis=1)
    [[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]

    r   z&Currently limited to at most 2D array.Nr1   r0   )	r7   r   r  r   r   r   r^   r   rN   )r`   rW   r   r   otherr  r   s          rQ   r%   r%     s    t 	
A	
B	Av!"JKK|rQw'**FAXNEa&CdD!CI1775>" ?E
.qs}=>? MrS   c           
      F   | j                   dkD  r| j                         } | dd | dd z  j                         }|d   dz   }| d   rdt        |      dk(  rt	        d| j
                        gS t	        d|d         g}|j                  d t        |ddd   |ddd         D               nDt        |      dk(  rg S t        |ddd   |ddd         D cg c]  \  }}t	        ||       }}}| d   r(|j                  t	        |d   | j
                               |S c c}}w )zv
    Finds the clumps (groups of data with the same values) for a 1D bool array.

    Returns a series of slices.
    r1   Nr   r0   c              3   :   K   | ]  \  }}t        ||        y wri   )r   )r   leftrights      rQ   r   z_ezclump.<locals>.<genexpr>w  s%      B!dE e$ Bs   r   )	r   r   r  r   r   r   extendr  r   )r[   r  rr  r  s        rQ   _ezclumpr  g  s.    yy1}zz|8d3Bi
(
(
*C
a&1*CAws8q=!TYY'((1c!f	 B%(Qr!Vc!$Q$i%@B 	C s8q=I36s5Bq5z3qt!t93MNKD%U4NNBx	s2w		*+H	 Os   Dc                 z    t        | dt              }|t        u rt        d| j                        gS t	        |       S )a  
    Return list of slices corresponding to the unmasked clumps of a 1-D array.
    (A "clump" is defined as a contiguous region of the array).

    Parameters
    ----------
    a : ndarray
        A one-dimensional masked array.

    Returns
    -------
    slices : list of slice
        The list of slices, one for each continuous region of unmasked
        elements in `a`.

    Notes
    -----
    .. versionadded:: 1.4.0

    See Also
    --------
    flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
    notmasked_contiguous, clump_masked

    Examples
    --------
    >>> a = np.ma.masked_array(np.arange(10))
    >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
    >>> np.ma.clump_unmasked(a)
    [slice(3, 6, None), slice(7, 8, None)]

    re   r0   )rq   rA   r   r   r  r`   r[   s     rQ   r	   r	     s:    B 1gv&Dv~a !!TE?rS   c                 V    t        j                  |       }|t        u rg S t        |      S )a
  
    Returns a list of slices corresponding to the masked clumps of a 1-D array.
    (A "clump" is defined as a contiguous region of the array).

    Parameters
    ----------
    a : ndarray
        A one-dimensional masked array.

    Returns
    -------
    slices : list of slice
        The list of slices, one for each continuous region of masked elements
        in `a`.

    Notes
    -----
    .. versionadded:: 1.4.0

    See Also
    --------
    flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
    notmasked_contiguous, clump_unmasked

    Examples
    --------
    >>> a = np.ma.masked_array(np.arange(10))
    >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
    >>> np.ma.clump_masked(a)
    [slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]

    )rr   r;   rA   r  r  s     rQ   r   r     s(    B ::a=Dv~	D>rS   c                 b    t        j                  | |      }t        |       }|t        urd||<   |S )zD
    Masked values in the input array result in rows of zeros.

    r0   )r\   r.   r;   rA   )r   r   _vanderrX   s       rQ   r.   r.     s1    
 ii1oG
A
NrS   c           	         t        |       } t        |      }t        |       }|j                  dk(  rt        |t        |            }nJ|j                  dk(  r0t        t	        |            }|t
        urt        ||dddf         }nt        d      |dt        |      }|j                  dk7  rt        d      |j                  d   |j                  d   k7  rt        d      t        |t        |            }|t
        ur+| }	|||	   }t        j                  | |	   ||	   |||||      S t        j                  | ||||||      S )zE
    Any masked values in x is propagated in y, and vice-versa.

    r1   r   Nr0   z Expected a 1D or 2D array for y!z expected a 1-d array for weightsz(expected w and y to have the same length)
r7   r;   r   r@   r   rA   r   r^   r\   r'   )
r   rQ  degrcondfullwr   rX   mynot_ms
             rQ   r'   r'     s.   
 	
A
A
Avv{Awqz"	
1Yq\"V2ad8$A:;;}AJ66Q;>??771:#FGGAwqz"=%Azz!E(AeHc5$3GGzz!QUD!S99rS   ri   )NNF)NNFF)NN)FF)F)NTT)NTFTN)T)NFNF)frl   __all__r  r    r2   rr   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   r   numpyr\   rG   r  numpy.lib.array_utilsrH   rI   numpy.lib._function_base_implrJ   numpy.lib._index_tricks_implrK   numpy._core.numericrR   r   rK  r    r!   rg   r   r   r   r   r   r   r   r/   r(   r   r
   r   r+   r   r   r   r   r   findrstripr   r   r"   r   r   r   r   r   r   r   r   r   r,   r   r*   r   r   r-   r)   rY  r   r   rp  r~  r#   r$   r   r&   r   r%   r  r	   r   r.   rt   r'   ry   rS   rQ   <module>r     s  	
          + L 2 9 432j " 9x<D1 1h-_ -$
)/ 
)? 2o . %\2
$\2
$\2
(2 2	X	&">2	X	&G$		)!*-O` ..66  2 & 00881			#	#	(	(	133968+-O`d[[dNL5^Rj6r4%n#"L%"PUp kk /d kk .j"J.b)@!H0#f6@9.@B(!VWt t"++D++aN(( (<,  ,* jA H4n0Mf6rJZ:$N$X	 RYY..? :D "++bjj00'//BrS   