
    wg                     Z    d Z ddlmZ ddlmZ ddlZddlmZ ddgZ	dd	Z
dd
ZddZd Zy)zB
Cuthill-McKee ordering of graph nodes to produce sparse matrices
    )deque)
itemgetterN   )arbitrary_elementcuthill_mckee_orderingreverse_cuthill_mckee_orderingc              #      K   t        j                  |       D ]%  }t        | j                  |      |      E d{    ' y7 w)a  Generate an ordering (permutation) of the graph nodes to make
    a sparse matrix.

    Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    heuristic : function, optional
      Function to choose starting node for RCM algorithm.  If None
      a node from a pseudo-peripheral pair is used.  A user-defined function
      can be supplied that takes a graph object and returns a single node.

    Returns
    -------
    nodes : generator
       Generator of nodes in Cuthill-McKee ordering.

    Examples
    --------
    >>> from networkx.utils import cuthill_mckee_ordering
    >>> G = nx.path_graph(4)
    >>> rcm = list(cuthill_mckee_ordering(G))
    >>> A = nx.adjacency_matrix(G, nodelist=rcm)

    Smallest degree node as heuristic function:

    >>> def smallest_degree(G):
    ...     return min(G, key=G.degree)
    >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))


    See Also
    --------
    reverse_cuthill_mckee_ordering

    Notes
    -----
    The optimal solution the bandwidth reduction is NP-complete [2]_.


    References
    ----------
    .. [1] E. Cuthill and J. McKee.
       Reducing the bandwidth of sparse symmetric matrices,
       In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
       http://doi.acm.org/10.1145/800195.805928
    .. [2]  Steven S. Skiena. 1997. The Algorithm Design Manual.
       Springer-Verlag New York, Inc., New York, NY, USA.
    N)nxconnected_components connected_cuthill_mckee_orderingsubgraph)G	heuristiccs      W/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/utils/rcm.pyr   r      s@     j $$Q' N3AJJqM9MMMNMs   7AAAc                 @    t        t        t        | |                  S )a  Generate an ordering (permutation) of the graph nodes to make
    a sparse matrix.

    Uses the reverse Cuthill-McKee heuristic (based on breadth-first search)
    [1]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    heuristic : function, optional
      Function to choose starting node for RCM algorithm.  If None
      a node from a pseudo-peripheral pair is used.  A user-defined function
      can be supplied that takes a graph object and returns a single node.

    Returns
    -------
    nodes : generator
       Generator of nodes in reverse Cuthill-McKee ordering.

    Examples
    --------
    >>> from networkx.utils import reverse_cuthill_mckee_ordering
    >>> G = nx.path_graph(4)
    >>> rcm = list(reverse_cuthill_mckee_ordering(G))
    >>> A = nx.adjacency_matrix(G, nodelist=rcm)

    Smallest degree node as heuristic function:

    >>> def smallest_degree(G):
    ...     return min(G, key=G.degree)
    >>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))


    See Also
    --------
    cuthill_mckee_ordering

    Notes
    -----
    The optimal solution the bandwidth reduction is NP-complete [2]_.

    References
    ----------
    .. [1] E. Cuthill and J. McKee.
       Reducing the bandwidth of sparse symmetric matrices,
       In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.
       http://doi.acm.org/10.1145/800195.805928
    .. [2]  Steven S. Skiena. 1997. The Algorithm Design Manual.
       Springer-Verlag New York, Inc., New York, NY, USA.
    )r   )reversedlistr   )r   r   s     r   r   r   H   s    j D/YGHII    c              #   j  K   |t        |       }n ||       }|h}t        |g      }|r|j                         }| t        | j	                  t        | |         |z
        t        d            }|D cg c]  \  }}|	 }	}}|j                  |	       |j                  |	       |ry y c c}}w w)N   key)	pseudo_peripheral_noder   popleftsorteddegreesetr   updateextend)
r   r   startvisitedqueueparentndndchildrens
             r   r   r      s     &q)!gG5'NE
AHHS6^g56JqMJ"$%$!QA%%x X  &s   A5B37B-'B3+B3c                 ,   t        |       }d}|}	 t        t        j                  | |            }t	        |j                               |k  r	 |S }fd|j                         D        }t        | j                  |      t        d            \  }})Nr   c              3   4   K   | ]  \  }}|k(  s|  y wN ).0r&   distls      r   	<genexpr>z)pseudo_peripheral_node.<locals>.<genexpr>   s     >'!TDAIA>s   r   r   )
r   dictr
   shortest_path_lengthmaxvaluesitemsminr   r   )r   ulpvsplfarthestdegr/   s          @r   r   r      s     	!A	
B	A
2**1a01

7 H >SYY[>QXXh'Z];3 r   r+   )__doc__collectionsr   operatorr   networkxr
   utilsr   __all__r   r   r   r   r,   r   r   <module>rC      s;       %#%E
F6Nr5Jp"r   