
    wgw                         d Z ddlZg dZ ej                  d      dd       Z ej                  d      dd       Z ej                  d      dd       Zej                  d	        Zej                  dd
       Z	y)z 
Eigenvalue spectrum of graphs.
    N)laplacian_spectrumadjacency_spectrummodularity_spectrumnormalized_laplacian_spectrumbethe_hessian_spectrumweight)
edge_attrsc                     ddl }|j                  j                  t        j                  | |      j                               S )a  Returns eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See :func:`~networkx.convert_matrix.to_numpy_array` for other options.

    See Also
    --------
    laplacian_matrix

    Examples
    --------
    The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
    to the number of connected components of G.

    >>> G = nx.Graph()  # Create a graph with 5 nodes and 3 connected components
    >>> G.add_nodes_from(range(5))
    >>> G.add_edges_from([(0, 2), (3, 4)])
    >>> nx.laplacian_spectrum(G)
    array([0., 0., 0., 2., 2.])

    r   Nr   )scipylinalgeigvalshnxlaplacian_matrixtodenseGr   sps      ]/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/linalg/spectrum.pyr   r      s3    N 99b11!FCKKMNN    c                     ddl }|j                  j                  t        j                  | |      j                               S )a#  Return eigenvalues of the normalized Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    normalized_laplacian_matrix
    r   Nr   )r   r   r   r   normalized_laplacian_matrixr   r   s      r   r   r   <   s7    6 99
&&q8@@B r   c                     ddl }|j                  j                  t        j                  | |      j                               S )a  Returns eigenvalues of the adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    adjacency_matrix
    r   Nr   )r   r   eigvalsr   adjacency_matrixr   r   s      r   r   r   ^   s2    6 99R006BJJLMMr   c                     ddl }| j                         r.|j                  j                  t	        j
                  |             S |j                  j                  t	        j                  |             S )a  Returns eigenvalues of the modularity matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    r   N)r   is_directedr   r   r   directed_modularity_matrixmodularity_matrix)r   r   s     r   r   r   ~   sP    . }}yy  !>!>q!ABByy  !5!5a!899r   c                     ddl }|j                  j                  t        j                  | |      j                               S )u  Returns eigenvalues of the Bethe Hessian matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    r : float
       Regularizer parameter

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    bethe_hessian_matrix

    References
    ----------
    .. [1] A. Saade, F. Krzakala and L. Zdeborová
       "Spectral clustering of graphs with the bethe hessian",
       Advances in Neural Information Processing Systems. 2014.
    r   N)r   r   r   r   bethe_hessian_matrixr   )r   rr   s      r   r   r      s2    6 99b55a;CCEFFr   r   )N)
__doc__networkxr   __all___dispatchabler   r   r   r   r    r   r   <module>r(      s     X&(O '(OV X& 'B X&N 'N> : :< G Gr   