
    wg
                     t    d Z ddlZddlmZ dgZ ed       ed      ej                  dd                     Zy)	z5Bethe Hessian or deformed Laplacian matrix of graphs.    N)not_implemented_forbethe_hessian_matrixdirected
multigraphc           	      :   ddl }|t        |       }|Nt        d t        j                  |       D              t        d t        j                  |       D              z  dz
  }t        j
                  | |d      }|j                  \  }}|j                  j                  |j                  j                  |j                  d      d||d	            }|j                  j                  |j                  j                  ||d	            }|d
z  dz
  |z  ||z  z
  |z   S )u  Returns the Bethe Hessian matrix of G.

    The Bethe Hessian is a family of matrices parametrized by r, defined as
    H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
    diagonal matrix of node degrees, and I is the identify matrix. It is equal
    to the graph laplacian when the regularizer r = 1.

    The default choice of regularizer should be the ratio [2]_

    .. math::
      r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1

    Parameters
    ----------
    G : Graph
       A NetworkX graph
    r : float
       Regularizer parameter
    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by ``G.nodes()``.

    Returns
    -------
    H : scipy.sparse.csr_array
      The Bethe Hessian matrix of `G`, with parameter `r`.

    Examples
    --------
    >>> k = [3, 2, 2, 1, 0]
    >>> G = nx.havel_hakimi_graph(k)
    >>> H = nx.bethe_hessian_matrix(G)
    >>> H.toarray()
    array([[ 3.5625, -1.25  , -1.25  , -1.25  ,  0.    ],
           [-1.25  ,  2.5625, -1.25  ,  0.    ,  0.    ],
           [-1.25  , -1.25  ,  2.5625,  0.    ,  0.    ],
           [-1.25  ,  0.    ,  0.    ,  1.5625,  0.    ],
           [ 0.    ,  0.    ,  0.    ,  0.    ,  0.5625]])

    See Also
    --------
    bethe_hessian_spectrum
    adjacency_matrix
    laplacian_matrix

    References
    ----------
    .. [1] A. Saade, F. Krzakala and L. Zdeborová
       "Spectral Clustering of Graphs with the Bethe Hessian",
       Advances in Neural Information Processing Systems, 2014.
    .. [2] C. M. Le, E. Levina
       "Estimating the number of communities in networks by spectral methods"
       arXiv:1507.00827, 2015.
    r   Nc              3   ,   K   | ]  \  }}|d z    yw)   N .0vds      g/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/linalg/bethehessianmatrix.py	<genexpr>z'bethe_hessian_matrix.<locals>.<genexpr>H   s     .A1.s   c              3   &   K   | ]	  \  }}|  y w)Nr
   r   s      r   r   z'bethe_hessian_matrix.<locals>.<genexpr>H   s     4P41aQ4Ps      csr)nodelistformat)axis)r   r	   )scipylistsumnxdegreeto_scipy_sparse_arrayshapesparse	csr_arrayspdiagseye)	Grr   spAnmDIs	            r   r   r   	   s    t 7y.1..4P299Q<4P1PPSTT
  XeDA77DAq
		BII--aeeemQ1U-STA
		BIIMM!QuM=>AqD1H>AE!A%%    )NN)__doc__networkxr   networkx.utilsr   __all___dispatchabler   r
   r*   r   <module>r0      sL    ;  .!
" Z \"C&  # !C&r*   