
    wg                         d Z ddlZddlmZ ddlmZ ddlmZ ddgZ	 ed       ej                  dd	
      dddd              Z ed       ej                  dd	
      dddd              Zy)zFunctions for generating graphs based on the "duplication" method.

These graph generators start with a small initial graph then duplicate
nodes and (partially) duplicate their edges. These functions are
generally inspired by biological networks.

    N)NetworkXError)py_random_state)check_create_usingpartial_duplication_graphduplication_divergence_graph   T)graphsreturns_graphcreate_usingc                   t        |dd      }|dk  s|dkD  s
|dk  s|dkD  rd}t        |      || kD  rt        d      t        j                  ||      }t	        ||       D ]  }|j                  d|dz
        }	|j                  |       t        t        j                  ||	            D ](  }
|j                         |k  s|j                  ||
       * |j                         |k  s|j                  ||	        |S )a  Returns a random graph using the partial duplication model.

    Parameters
    ----------
    N : int
        The total number of nodes in the final graph.

    n : int
        The number of nodes in the initial clique.

    p : float
        The probability of joining each neighbor of a node to the
        duplicate node. Must be a number in the between zero and one,
        inclusive.

    q : float
        The probability of joining the source node to the duplicate
        node. Must be a number in the between zero and one, inclusive.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    create_using : Graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.
        Multigraph and directed types are not supported and raise a ``NetworkXError``.

    Notes
    -----
    A graph of nodes is grown by creating a fully connected graph
    of size `n`. The following procedure is then repeated until
    a total of `N` nodes have been reached.

    1. A random node, *u*, is picked and a new node, *v*, is created.
    2. For each neighbor of *u* an edge from the neighbor to *v* is created
       with probability `p`.
    3. An edge from *u* to *v* is created with probability `q`.

    This algorithm appears in [1].

    This implementation allows the possibility of generating
    disconnected graphs.

    References
    ----------
    .. [1] Knudsen Michael, and Carsten Wiuf. "A Markov chain approach to
           randomly grown graphs." Journal of Applied Mathematics 2008.
           <https://doi.org/10.1155/2008/190836>

    Fdirected
multigraphr      z3partial duplication graph must have 0 <= p, q <= 1.z+partial duplication graph must have n <= N.)r   r   nxcomplete_graphrangerandintadd_nodelistall_neighborsrandomadd_edge)Nnpqseedr   msgGnew_nodesrc_nodenbr_nodes              d/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/generators/duplication.pyr   r      s    j &lUuUL1uAQ!a%CC  1uIJJ
!\*A!QK +<<8a<0 	


8 R--a:; 	/H{{}q 

8X.	/ ;;=1JJx*+  H       c                   |dkD  s|dk  rd| d}t        j                  |      | dk  rd}t        j                  |      t        |dd      }t        j                  |	      }|j	                  dd       d}|| k  r|j                  t        |            }|j                  |       d}|j                  |      D ]*  }	|j                         |k  s|j	                  ||	       d
}, |s|j                  |       n|dz  }|| k  r|S )a  Returns an undirected graph using the duplication-divergence model.

    A graph of `n` nodes is created by duplicating the initial nodes
    and retaining edges incident to the original nodes with a retention
    probability `p`.

    Parameters
    ----------
    n : int
        The desired number of nodes in the graph.
    p : float
        The probability for retaining the edge of the replicated node.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    create_using : Graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.
        Multigraph and directed types are not supported and raise a ``NetworkXError``.

    Returns
    -------
    G : Graph

    Raises
    ------
    NetworkXError
        If `p` is not a valid probability.
        If `n` is less than 2.

    Notes
    -----
    This algorithm appears in [1].

    This implementation disallows the possibility of generating
    disconnected graphs.

    References
    ----------
    .. [1] I. Ispolatov, P. L. Krapivsky, A. Yuryev,
       "Duplication-divergence model of protein interaction network",
       Phys. Rev. E, 71, 061911, 2005.

    r   r   zNetworkXError p=z is not in [0,1].r'   z$n must be greater than or equal to 2Fr   r   T)r   r   r   empty_graphr   choicer   r   	neighborsr   remove_node)
r   r   r   r   r    r!   irandom_nodeflagnbrs
             r%   r   r   a   s   \ 	1uA #45s##1u4s##%lUuUL
L1A JJq!	A
a%kk$q'*	

1;;{+ 	C{{}q 

1c"		
 MM! FA# a%$ Hr&   )N)__doc__networkxr   networkx.exceptionr   networkx.utilsr   networkx.utils.miscr   __all___dispatchabler   r    r&   r%   <module>r9      s     , * 2&(F
G T2KT K 3 K\ T2K$ K 3 Kr&   