
    wg6                         d Z ddlZddlmZ g dZej                  d        Z ed      ej                  d               Z ed      ej                  d               Z	y)	zDegree centrality measures.    N)not_implemented_for)degree_centralityin_degree_centralityout_degree_centralityc                     t        |       dk  r| D ci c]  }|d c}S dt        |       dz
  z  }| j                         D ci c]  \  }}|||z   }}}|S c c}w c c}}w )a  Compute the degree centrality for nodes.

    The degree centrality for a node v is the fraction of nodes it
    is connected to.

    Parameters
    ----------
    G : graph
      A networkx graph

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with degree centrality as the value.

    Examples
    --------
    >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
    >>> nx.degree_centrality(G)
    {0: 1.0, 1: 1.0, 2: 0.6666666666666666, 3: 0.6666666666666666}

    See Also
    --------
    betweenness_centrality, load_centrality, eigenvector_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
             ?)lendegreeGnsd
centralitys        n/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/centrality/degree_alg.pyr   r   	   sl    H 1v{ 1  s1v|A'(xxz2tq!!QU(2J2	 ! 3   
AA
undirectedc                     t        |       dk  r| D ci c]  }|d c}S dt        |       dz
  z  }| j                         D ci c]  \  }}|||z   }}}|S c c}w c c}}w )a
  Compute the in-degree centrality for nodes.

    The in-degree centrality for a node v is the fraction of nodes its
    incoming edges are connected to.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    Returns
    -------
    nodes : dictionary
        Dictionary of nodes with in-degree centrality as values.

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
    >>> nx.in_degree_centrality(G)
    {0: 0.0, 1: 0.3333333333333333, 2: 0.6666666666666666, 3: 0.6666666666666666}

    See Also
    --------
    degree_centrality, out_degree_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    r   r	   )r
   	in_degreer   s        r   r   r   5   sl    T 1v{ 1  s1v|A'({{}5tq!!QU(5J5	 ! 6r   c                     t        |       dk  r| D ci c]  }|d c}S dt        |       dz
  z  }| j                         D ci c]  \  }}|||z   }}}|S c c}w c c}}w )a  Compute the out-degree centrality for nodes.

    The out-degree centrality for a node v is the fraction of nodes its
    outgoing edges are connected to.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    Returns
    -------
    nodes : dictionary
        Dictionary of nodes with out-degree centrality as values.

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
    >>> nx.out_degree_centrality(G)
    {0: 1.0, 1: 0.6666666666666666, 2: 0.0, 3: 0.0}

    See Also
    --------
    degree_centrality, in_degree_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    r   r	   )r
   
out_degreer   s        r   r   r   g   sl    T 1v{ 1  s1v|A'(||~6tq!!QU(6J6	 ! 7r   )
__doc__networkxnxnetworkx.utils.decoratorsr   __all___dispatchabler   r   r        r   <module>r!      s}    !  9
P ( (V \"-  #-` \"-  #-r    