Ë
    ·¯wg—  ã                   ó:   — d Z ddlZdgZej                  d„ «       Zy)a   
**************
Graph Matching
**************

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
edges; that is, no two edges share a common vertex.

`Wikipedia: Matching <https://en.wikipedia.org/wiki/Matching_(graph_theory)>`_
é    NÚmin_maximal_matchingc                 ó,   — t        j                  | «      S )aö  Returns the minimum maximal matching of G. That is, out of all maximal
    matchings of the graph G, the smallest is returned.

    Parameters
    ----------
    G : NetworkX graph
      Undirected graph

    Returns
    -------
    min_maximal_matching : set
      Returns a set of edges such that no two edges share a common endpoint
      and every edge not in the set shares some common endpoint in the set.
      Cardinality will be 2*OPT in the worst case.

    Notes
    -----
    The algorithm computes an approximate solution for the minimum maximal
    cardinality matching problem. The solution is no more than 2 * OPT in size.
    Runtime is $O(|E|)$.

    References
    ----------
    .. [1] Vazirani, Vijay Approximation Algorithms (2001)
    )ÚnxÚmaximal_matching)ÚGs    úo/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/approximation/matching.pyr   r      s   € ô6 ×Ñ˜qÓ!Ð!ó    )Ú__doc__Únetworkxr   Ú__all__Ú_dispatchabler   © r	   r   ú<module>r      s1   ðñ	ó à!Ð
"€ð ×Ññ"ó ñ"r	   