
    wg                     V    d Z ddlmZ ddlZdgZ ej                  d      dd       Zy)	z
Vitality measures.
    )partialNcloseness_vitalityweight)
edge_attrsc                    |t        j                  | |      }|8t        j                  | j                  t        |       |hz
        |      }||z
  S t	        t
        | ||      }| D ci c]  }| ||       c}S c c}w )a  Returns the closeness vitality for nodes in the graph.

    The *closeness vitality* of a node, defined in Section 3.6.2 of [1],
    is the change in the sum of distances between all node pairs when
    excluding that node.

    Parameters
    ----------
    G : NetworkX graph
        A strongly-connected graph.

    weight : string
        The name of the edge attribute used as weight. This is passed
        directly to the :func:`~networkx.wiener_index` function.

    node : object
        If specified, only the closeness vitality for this node will be
        returned. Otherwise, a dictionary mapping each node to its
        closeness vitality will be returned.

    Other parameters
    ----------------
    wiener_index : number
        If you have already computed the Wiener index of the graph
        `G`, you can provide that value here. Otherwise, it will be
        computed for you.

    Returns
    -------
    dictionary or float
        If `node` is None, this function returns a dictionary
        with nodes as keys and closeness vitality as the
        value. Otherwise, it returns only the closeness vitality for the
        specified `node`.

        The closeness vitality of a node may be negative infinity if
        removing that node would disconnect the graph.

    Examples
    --------
    >>> G = nx.cycle_graph(3)
    >>> nx.closeness_vitality(G)
    {0: 2.0, 1: 2.0, 2: 2.0}

    See Also
    --------
    closeness_centrality

    References
    ----------
    .. [1] Ulrik Brandes, Thomas Erlebach (eds.).
           *Network Analysis: Methodological Foundations*.
           Springer, 2005.
           <http://books.google.com/books?id=TTNhSm7HYrIC>

    )r   )r   wiener_index)node)nxr   subgraphsetr   r   )Gr	   r   r   aftervitalityvs          a/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/vitality.pyr   r      s~    t q8

3q6TF? ;FKe##)1V,WH)*+AAxQ+++s   +A?)NNN)__doc__	functoolsr   networkxr
   __all___dispatchabler        r   <module>r      s;     
  X&?, '?,r   