
    wg                         d Z ddlZddlZddlmZ dgZ ed       ed       ej                  d      d
d	                     Zy)z#Computation of graph non-randomness    N)not_implemented_fornon_randomnessdirected
multigraphweight)
edge_attrsc           	         ddl }t        j                  |       rt        j                  d      t        j                  |       st        j
                  d      t        t        t        j                  |                   dkD  rt        j                  d      |1t        t        t        j                  j                  |                   }|j                  j                  t        j                  | |            }t        |j!                  |j#                  |d|                   }| j%                         }| j'                         }d|z  |z  |||z
  z  z  }||d|z  z
  |z  |z   z
  t)        j*                  d|z  |z  d|z
  z        z  }	||	fS )	a  Compute the non-randomness of graph G.

    The first returned value nr is the sum of non-randomness values of all
    edges within the graph (where the non-randomness of an edge tends to be
    small when the two nodes linked by that edge are from two different
    communities).

    The second computed value nr_rd is a relative measure that indicates
    to what extent graph G is different from random graphs in terms
    of probability. When it is close to 0, the graph tends to be more
    likely generated by an Erdos Renyi model.

    Parameters
    ----------
    G : NetworkX graph
        Graph must be symmetric, connected, and without self-loops.

    k : int
        The number of communities in G.
        If k is not set, the function will use a default community
        detection algorithm to set it.

    weight : string or None, optional (default=None)
        The name of an edge attribute that holds the numerical value used
        as a weight. If None, then each edge has weight 1, i.e., the graph is
        binary.

    Returns
    -------
    non-randomness : (float, float) tuple
        Non-randomness, Relative non-randomness w.r.t.
        Erdos Renyi random graphs.

    Raises
    ------
    NetworkXException
        if the input graph is not connected.
    NetworkXError
        if the input graph contains self-loops or if graph has no edges.

    Examples
    --------
    >>> G = nx.karate_club_graph()
    >>> nr, nr_rd = nx.non_randomness(G, 2)
    >>> nr, nr_rd = nx.non_randomness(G, 2, "weight")

    Notes
    -----
    This computes Eq. (4.4) and (4.5) in Ref. [1]_.

    If a weight field is passed, this algorithm will use the eigenvalues
    of the weighted adjacency matrix to compute Eq. (4.4) and (4.5).

    References
    ----------
    .. [1] Xiaowei Ying and Xintao Wu,
           On Randomness Measures for Social Networks,
           SIAM International Conference on Data Mining. 2009
    r   Nz-non_randomness not applicable to empty graphszNon connected graph.z!Graph must not contain self-loops)r         )numpynxis_emptyNetworkXErroris_connectedNetworkXExceptionlenlistselfloop_edgestuple	communitylabel_propagation_communitieslinalgeigvalsto_numpy_arrayfloatrealsumnumber_of_nodesnumber_of_edgesmathsqrt)
Gkr   npeigenvaluesnrnmpnr_rds
             g/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/non_randomness.pyr   r      sX   ~  
{{1~NOO??1""#9::
4!!!$%&*BCCybll@@CDE ))##B$5$5a$GHK	rwwrvvk"1o./	0B	A	A	
QqAE{#A AAI?Q&'499QUQY!a%5H+IIEu9    )Nr   )	__doc__r    networkxr   networkx.utilsr   __all___dispatchabler    r,   r+   <module>r3      sV    *   .
 Z \"X&T ' # !Tr,   