
    wg(	                     x    d Z ddlZddlmZmZ dgZ ed       ed      ej                  dd                     Zy)	z=
Algorithm to find a maximal (not maximum) independent set.

    N)not_implemented_forpy_random_statemaximal_independent_setdirected   c           	         |s|j                  t        |             h}nt        |      }|j                  |       st	        j
                  | d      t        j                  |D cg c]  }t        | j                  |          c} }t        j                  ||      rt	        j
                  | d      t        |      }t        | j                               j                  |j                  |            }|rY|j                  t        |            }|j                  |       |j                  t        | j                  |         |gz          |rY|S c c}w )a'  Returns a random maximal independent set guaranteed to contain
    a given set of nodes.

    An independent set is a set of nodes such that the subgraph
    of G induced by these nodes contains no edges. A maximal
    independent set is an independent set such that it is not possible
    to add a new node and still get an independent set.

    Parameters
    ----------
    G : NetworkX graph

    nodes : list or iterable
       Nodes that must be part of the independent set. This set of nodes
       must be independent.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    indep_nodes : list
       List of nodes that are part of a maximal independent set.

    Raises
    ------
    NetworkXUnfeasible
       If the nodes in the provided list are not part of the graph or
       do not form an independent set, an exception is raised.

    NetworkXNotImplemented
        If `G` is directed.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> nx.maximal_independent_set(G)  # doctest: +SKIP
    [4, 0, 2]
    >>> nx.maximal_independent_set(G, [1])  # doctest: +SKIP
    [1, 3]

    Notes
    -----
    This algorithm does not solve the maximum independent set problem.

    z" is not a subset of the nodes of Gz is not an independent set of G)choicelistsetissubsetnxNetworkXUnfeasibleunionadjintersectionnodes
differenceappenddifference_update)Gr   seedv	neighborsindep_nodesavailable_nodesnodes           \/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/mis.pyr   r      s   f T!W%&E
>>!##ug-O$PQQ		59aCaM9:I
	5)##ug-L$MNNu+K!'')n//	0FGO
{{4014 ))$quuT{*;tf*DE   :s   &E)NN)	__doc__networkxr   networkx.utilsr   r   __all___dispatchabler        r   <module>r%      sN   
  ?$
% Z ?   !?r$   