
    wg=                     T   d Z ddlZddlZg dZ ej
                  d      dd       Zd Z ej
                  d      d        Z ej
                  d      d        Z	 ej
                  d      d	        Z
 ej
                  d      d
        Z ej
                  d      d        Zy)zTest sequences for graphiness.    N)is_graphicalis_multigraphicalis_pseudographicalis_digraphical%is_valid_degree_sequence_erdos_gallai%is_valid_degree_sequence_havel_hakimi)graphsc                     |dk(  rt        t        |             }|S |dk(  rt        t        |             }|S d}t        j                  |      )us  Returns True if sequence is a valid degree sequence.

    A degree sequence is valid if some graph can realize it.

    Parameters
    ----------
    sequence : list or iterable container
        A sequence of integer node degrees

    method : "eg" | "hh"  (default: 'eg')
        The method used to validate the degree sequence.
        "eg" corresponds to the Erdős-Gallai algorithm
        [EG1960]_, [choudum1986]_, and
        "hh" to the Havel-Hakimi algorithm
        [havel1955]_, [hakimi1962]_, [CL1996]_.

    Returns
    -------
    valid : bool
        True if the sequence is a valid degree sequence and False if not.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> sequence = (d for n, d in G.degree())
    >>> nx.is_graphical(sequence)
    True

    To test a non-graphical sequence:
    >>> sequence_list = [d for n, d in G.degree()]
    >>> sequence_list[-1] += 1
    >>> nx.is_graphical(sequence_list)
    False

    References
    ----------
    .. [EG1960] Erdős and Gallai, Mat. Lapok 11 264, 1960.
    .. [choudum1986] S.A. Choudum. "A simple proof of the Erdős-Gallai theorem on
       graph sequences." Bulletin of the Australian Mathematical Society, 33,
       pp 67-70, 1986. https://doi.org/10.1017/S0004972700002872
    .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs"
       Casopis Pest. Mat. 80, 477-480, 1955.
    .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as
       Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962.
    .. [CL1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs",
       Chapman and Hall/CRC, 1996.
    eghhz`method` must be 'eg' or 'hh')r   listr   nxNetworkXException)sequencemethodvalidmsgs       b/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/graphical.pyr   r      sW    b ~5d8nE L 
45d8nE L .""3''    c                 x   t         j                  j                  |       } t        |       }dg|z  }d|ddf\  }}}}| D ]T  }|dk  s||k\  rt         j                  |dkD  s#t        ||      t        ||      ||z   |dz   f\  }}}}||xx   dz  cc<   V |dz  s|||dz
  z  kD  rt         j                  |||||fS )Nr         )r   utilsmake_list_of_intslenNetworkXUnfeasiblemaxmin)deg_sequencepnum_degsdmaxdmindsumnds           r   _basic_graphical_testsr'   L   s    88--l;LLAsQwHQ1*D$a q5AF'''U"%dA,D!dQhA"MD$aQK1K ax4!q1u+%###tQ((r   c                 
   	 t        |       \  }}}}}|dk(  sd|z  |z  ||z   dz   ||z   dz   z  k\  rydg|dz   z  }|dkD  r||   dk(  r|dz  }||   dk(  r||dz
  kD  ry||   dz
  |dz
  c||<   }d}|}t        |      D ]<  }	||   dk(  r|dz  }||   dk(  r||   dz
  |dz
  c||<   }|dkD  s0|dz
  ||<   |dz  }> t        |      D ]  }	||	   }
||
   dz   |dz   c||
<   } |dkD  ry# t        j                  $ r Y yw xY w)a  Returns True if deg_sequence can be realized by a simple graph.

    The validation proceeds using the Havel-Hakimi theorem
    [havel1955]_, [hakimi1962]_, [CL1996]_.
    Worst-case run time is $O(s)$ where $s$ is the sum of the sequence.

    Parameters
    ----------
    deg_sequence : list
        A list of integers where each element specifies the degree of a node
        in a graph.

    Returns
    -------
    valid : bool
        True if deg_sequence is graphical and False if not.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
    >>> sequence = (d for _, d in G.degree())
    >>> nx.is_valid_degree_sequence_havel_hakimi(sequence)
    True

    To test a non-valid sequence:
    >>> sequence_list = [d for _, d in G.degree()]
    >>> sequence_list[-1] += 1
    >>> nx.is_valid_degree_sequence_havel_hakimi(sequence_list)
    False

    Notes
    -----
    The ZZ condition says that for the sequence d if

    .. math::
        |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}

    then d is graphical.  This was shown in Theorem 6 in [1]_.

    References
    ----------
    .. [1] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory
       of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
    .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs"
       Casopis Pest. Mat. 80, 477-480, 1955.
    .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as
       Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962.
    .. [CL1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs",
       Chapman and Hall/CRC, 1996.
    Fr      r   Tr'   r   r   range)r   r"   r#   r$   r%   r!   modstubsmslenkistubs              r   r   r   `   s   h(>|(L%dD!X 	AvTA$+/dTkAo!FFsdQhH
a%tn!AID tn! !a%< %TNQ.At 	A1+"Q 1+"%a[1_a!eNHQK1u"#a%
	 u 	:AA;D ( 2AEHTNA	:- a%2 C    s   C, ,DDc                    	 t        |       \  }}}}}|dk(  sd|z  |z  ||z   dz   ||z   dz   z  k\  ryd\  }}}}	t        ||dz
  d      D ]v  }
|
|dz   k  r y||
   dkD  s||
   }|
||z   k  r|
|z
  }|||
z  z  }t        |      D ]  }||||z      z  }|	||z   |||z      z  z  }	  ||z  }|||dz
  z  ||z  z
  |	z   kD  sv y y# t        j                  $ r Y yw xY w)u  Returns True if deg_sequence can be realized by a simple graph.

    The validation is done using the Erdős-Gallai theorem [EG1960]_.

    Parameters
    ----------
    deg_sequence : list
        A list of integers

    Returns
    -------
    valid : bool
        True if deg_sequence is graphical and False if not.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
    >>> sequence = (d for _, d in G.degree())
    >>> nx.is_valid_degree_sequence_erdos_gallai(sequence)
    True

    To test a non-valid sequence:
    >>> sequence_list = [d for _, d in G.degree()]
    >>> sequence_list[-1] += 1
    >>> nx.is_valid_degree_sequence_erdos_gallai(sequence_list)
    False

    Notes
    -----

    This implementation uses an equivalent form of the Erdős-Gallai criterion.
    Worst-case run time is $O(n)$ where $n$ is the length of the sequence.

    Specifically, a sequence d is graphical if and only if the
    sum of the sequence is even and for all strong indices k in the sequence,

     .. math::

       \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k)
             = k(n-1) - ( k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j )

    A strong index k is any index where d_k >= k and the value n_j is the
    number of occurrences of j in d.  The maximal strong index is called the
    Durfee index.

    This particular rearrangement comes from the proof of Theorem 3 in [2]_.

    The ZZ condition says that for the sequence d if

    .. math::
        |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}

    then d is graphical.  This was shown in Theorem 6 in [2]_.

    References
    ----------
    .. [1] A. Tripathi and S. Vijay. "A note on a theorem of Erdős & Gallai",
       Discrete Mathematics, 265, pp. 417-420 (2003).
    .. [2] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory
       of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
    .. [EG1960] Erdős and Gallai, Mat. Lapok 11 264, 1960.
    Fr   r)   r   T)r   r   r   r   r*   )r   r"   r#   r$   r%   r!   r.   sum_degsum_njsum_jnjdkrun_sizevs                r   r   r      sJ   @(>|(L%dD!X 	AvTA$+/dTkAo!FF #-AwD$(B' A:B<!|HAL 6x"}$G8_ 5(1q5/)AEXa!e_445 MAa!eq6z1G;; -    s   C CCc                     	 t         j                  j                  |       }d\  }}|D ]  }|dk  r y||z   t	        ||      }} |dz  s|d|z  k  ryy# t         j                  $ r Y yw xY w)a  Returns True if some multigraph can realize the sequence.

    Parameters
    ----------
    sequence : list
        A list of integers

    Returns
    -------
    valid : bool
        True if deg_sequence is a multigraphic degree sequence and False if not.

    Examples
    --------
    >>> G = nx.MultiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
    >>> sequence = (d for _, d in G.degree())
    >>> nx.is_multigraphical(sequence)
    True

    To test a non-multigraphical sequence:
    >>> sequence_list = [d for _, d in G.degree()]
    >>> sequence_list[-1] += 1
    >>> nx.is_multigraphical(sequence_list)
    False

    Notes
    -----
    The worst-case run time is $O(n)$ where $n$ is the length of the sequence.

    References
    ----------
    .. [1] S. L. Hakimi. "On the realizability of a set of integers as
       degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506
       (1962).
    Fr   r   r   r   T)r   r   r   NetworkXErrorr   )r   r   r$   r"   r&   s        r   r   r     s    Jxx11(; JD$ ,q5AXs4|d, ax4!d(?  s   A A*)A*c                     	 t         j                  j                  |       }t	        |      dz  dk(  xr t        |      dk\  S # t         j                  $ r Y yw xY w)a:  Returns True if some pseudograph can realize the sequence.

    Every nonnegative integer sequence with an even sum is pseudographical
    (see [1]_).

    Parameters
    ----------
    sequence : list or iterable container
        A sequence of integer node degrees

    Returns
    -------
    valid : bool
      True if the sequence is a pseudographic degree sequence and False if not.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
    >>> sequence = (d for _, d in G.degree())
    >>> nx.is_pseudographical(sequence)
    True

    To test a non-pseudographical sequence:
    >>> sequence_list = [d for _, d in G.degree()]
    >>> sequence_list[-1] += 1
    >>> nx.is_pseudographical(sequence_list)
    False

    Notes
    -----
    The worst-case run time is $O(n)$ where n is the length of the sequence.

    References
    ----------
    .. [1] F. Boesch and F. Harary. "Line removal algorithms for graphs
       and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12),
       pp. 778-782 (1976).
    Fr   r   )r   r   r   r;   sumr   )r   r   s     r   r   r   H  s\    Pxx11(; |q A%@#l*;q*@@  s   A AAc                    	 t         j                  j                  |       }t         j                  j                  |      }ddt	        |      t	        |      f\  }}}}t        ||      }d}	|dk(  ryg g }}
t        |      D ]v  }d\  }}||k  r||   }||k  r||   }|dk  s|dk  r y||z   ||z   t        |	|      }	}}|dkD  r|
j                  d|z  d|z  f       ]|dkD  sc|j                  d|z         x ||k7  ryt        j                  |
       t        j                  |       dg|	dz   z  }|
rt        j                  |
      \  }}|dz  }|t	        |
      t	        |      z   kD  ryd}t        |      D ]h  }|r(|
r|
d   d   |d   kD  rt        j                  |      }d}nt        j                  |
      \  }}|dk(  r y|dz   dk  s|dk  sZ|dz   |f||<   |dz  }j t        |      D ]?  }||   }|d   dk  rt        j                  |
|       't        j                  ||d          A |dk  rt        j                  ||       |
ry# t         j                  $ r Y yw xY w)a  Returns True if some directed graph can realize the in- and out-degree
    sequences.

    Parameters
    ----------
    in_sequence : list or iterable container
        A sequence of integer node in-degrees

    out_sequence : list or iterable container
        A sequence of integer node out-degrees

    Returns
    -------
    valid : bool
      True if in and out-sequences are digraphic False if not.

    Examples
    --------
    >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
    >>> in_seq = (d for n, d in G.in_degree())
    >>> out_seq = (d for n, d in G.out_degree())
    >>> nx.is_digraphical(in_seq, out_seq)
    True

    To test a non-digraphical scenario:
    >>> in_seq_list = [d for n, d in G.in_degree()]
    >>> in_seq_list[-1] += 1
    >>> nx.is_digraphical(in_seq_list, out_seq)
    False

    Notes
    -----
    This algorithm is from Kleitman and Wang [1]_.
    The worst case runtime is $O(s \times \log n)$ where $s$ and $n$ are the
    sum and length of the sequences respectively.

    References
    ----------
    .. [1] D.J. Kleitman and D.L. Wang
       Algorithms for Constructing Graphs and Digraphs with Given Valences
       and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973)
    Fr   Tr:   r2   r   )r   r   r   r;   r   r   r+   appendheapqheapifyheappopheappush)in_sequenceout_sequencein_deg_sequenceout_deg_sequencesuminsumoutninnoutmaxnmaxinstubheapzeroheapr%   in_degout_degr,   freeoutfreeinr-   r/   stuboutstubinr0   s                          r   r   r   w  s   X((44[A8855lC
  !!S%93?O;PPE63sD>DEqyRhH4[ *t8&q)Gs7$Q'FA:1$v~v/?UFASuvA:OOR'\2;78q[OOBL)* 	MM(	MM(x519%H
!MM(3&"CMCM11 v 	AXa[^hqk-I--1$)MM($;!&!|{Q&1*#*Q;"7
	 u 	2AA;DAw{x.xa1	2 Q;NN8W-= > {  s   >I I('I()r   )__doc__r@   networkxr   __all___dispatchabler   r'   r   r   r   r   r    r   r   <module>r[      s    $   7 7t)( V Vr W Wt / /d +A +A\ k kr   