
    wg                         d Z ddlZddlmZ ddlmZ g dZej                  d        Z	d Z
 ed	       ed
      ej                  d                      Z ed	       ed
      ej                  d                      Zy)zI
=======================
Distance-regular graphs
=======================
    N)not_implemented_for   )diameter)is_distance_regularis_strongly_regularintersection_arrayglobal_parametersc                 N    	 t        |        y# t        j                  $ r Y yw xY w)a  Returns True if the graph is distance regular, False otherwise.

    A connected graph G is distance-regular if for any nodes x,y
    and any integers i,j=0,1,...,d (where d is the graph
    diameter), the number of vertices at distance i from x and
    distance j from y depends only on i,j and the graph distance
    between x and y, independently of the choice of x and y.

    Parameters
    ----------
    G: Networkx graph (undirected)

    Returns
    -------
    bool
      True if the graph is Distance Regular, False otherwise

    Examples
    --------
    >>> G = nx.hypercube_graph(6)
    >>> nx.is_distance_regular(G)
    True

    See Also
    --------
    intersection_array, global_parameters

    Notes
    -----
    For undirected and simple graphs only

    References
    ----------
    .. [1] Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
        Distance-Regular Graphs. New York: Springer-Verlag, 1989.
    .. [2] Weisstein, Eric W. "Distance-Regular Graph."
        http://mathworld.wolfram.com/Distance-RegularGraph.html

    TF)r   nxNetworkXErrorGs    i/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/distance_regular.pyr   r      s+    R1 s    $$c                 >      fdt         dgz   dg|z         D        S )a  Returns global parameters for a given intersection array.

    Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
    such that for any 2 vertices x,y in G at a distance i=d(x,y), there
    are exactly c_i neighbors of y at a distance of i-1 from x and b_i
    neighbors of y at a distance of i+1 from x.

    Thus, a distance regular graph has the global parameters,
    [[c_0,a_0,b_0],[c_1,a_1,b_1],......,[c_d,a_d,b_d]] for the
    intersection array  [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]
    where a_i+b_i+c_i=k , k= degree of every vertex.

    Parameters
    ----------
    b : list

    c : list

    Returns
    -------
    iterable
       An iterable over three tuples.

    Examples
    --------
    >>> G = nx.dodecahedral_graph()
    >>> b, c = nx.intersection_array(G)
    >>> list(nx.global_parameters(b, c))
    [(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]

    References
    ----------
    .. [1] Weisstein, Eric W. "Global Parameters."
       From MathWorld--A Wolfram Web Resource.
       http://mathworld.wolfram.com/GlobalParameters.html

    See Also
    --------
    intersection_array
    c              3   @   K   | ]  \  }}|d    |z
  |z
  |f  yw)r   N ).0xybs      r   	<genexpr>z$global_parameters.<locals>.<genexpr>m   s(     CTQQ!q1a Cs   r   )zip)r   cs   ` r   r	   r	   D   s%    R DSaS1#'-BCC    directed
multigraphc           
         t        |       dk(  rt        j                  d      t        | j	                               }t        |      \  }}|D ]!  \  }}||k7  rt        j                  d      |}# t        t        j                  |             t        fdD              }i }i }| D ]  }| D ]  }		 |   |	   }
t        | |	   D cg c]  }|   |   |
dz
  k(  s| c}      }t        | |	   D cg c]  }|   |   |
dz   k(  s| c}      }|j                  |
|      |k7  s|j                  |
|      |k7  rt        j                  d      |||
<   |||
<     t        |      D cg c]  }|j                  |d       c}t        |      D cg c]  }|j                  |dz   d       c}fS # t        $ r}t        j                  d      |d}~ww xY wc c}w c c}w c c}w c c}w )a  Returns the intersection array of a distance-regular graph.

    Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
    such that for any 2 vertices x,y in G at a distance i=d(x,y), there
    are exactly c_i neighbors of y at a distance of i-1 from x and b_i
    neighbors of y at a distance of i+1 from x.

    A distance regular graph's intersection array is given by,
    [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]

    Parameters
    ----------
    G: Networkx graph (undirected)

    Returns
    -------
    b,c: tuple of lists

    Examples
    --------
    >>> G = nx.icosahedral_graph()
    >>> nx.intersection_array(G)
    ([5, 2, 1], [1, 2, 5])

    References
    ----------
    .. [1] Weisstein, Eric W. "Intersection Array."
       From MathWorld--A Wolfram Web Resource.
       http://mathworld.wolfram.com/IntersectionArray.html

    See Also
    --------
    global_parameters
    r   zGraph has no nodes.zGraph is not distance regular.c              3   V   K   | ]   }t        |   j                                " y w)N)maxvalues)r   npath_lengths     r   r   z%intersection_array.<locals>.<genexpr>   s#     EA3{1~,,./Es   &)Nr   zGraph is not distance regular)lenr   NetworkXPointlessConceptiterdegreenextr   dictall_pairs_shortest_path_lengthr   KeyErrorgetrange)r   r&   _kknextr   bintcintuvierrr!   r   r   jr"   s                   @r   r   r   p   s   N 1v{))*?@@!((*F&\FQ 5A:""#CDD r88;<KEEEHDD  	ARN1% !C1Aq(9QU(BQCDA!C1Aq(9QU(BQCDAxx1~"dhhq!n&9&&'FGGDGDG	  "'x1A!Q1%*8_5!a%	5   R&&'GHcQR DC 	25s<   3F3GG2GG+G$G)3	G<GGc                 8    t        |       xr t        |       dk(  S )a  Returns True if and only if the given graph is strongly
    regular.

    An undirected graph is *strongly regular* if

    * it is regular,
    * each pair of adjacent vertices has the same number of neighbors in
      common,
    * each pair of nonadjacent vertices has the same number of neighbors
      in common.

    Each strongly regular graph is a distance-regular graph.
    Conversely, if a distance-regular graph has diameter two, then it is
    a strongly regular graph. For more information on distance-regular
    graphs, see :func:`is_distance_regular`.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    Returns
    -------
    bool
        Whether `G` is strongly regular.

    Examples
    --------

    The cycle graph on five vertices is strongly regular. It is
    two-regular, each pair of adjacent vertices has no shared neighbors,
    and each pair of nonadjacent vertices has one shared neighbor::

        >>> G = nx.cycle_graph(5)
        >>> nx.is_strongly_regular(G)
        True

       )r   r   r   s    r   r   r      s    j q!6hqkQ&66r   )__doc__networkxr   networkx.utilsr   distance_measuresr   __all___dispatchabler   r	   r   r   r   r   r   <module>r?      s     . ' , ,^)DX Z \"B  # !BL Z \"27  # !27r   