
    wg                        d Z ddlZddlZddlmZ g dZddZ ej                  d      dd       Z	 ej                  d      dd	       Z
ej                  dd
       Z ej                  d      dd       Z ej                  d      dd       Z ej                  d      dd       Z ej                  dddi      dd       Z ed       ej                  d      dd              Z ed       ej                  d      dd              Zej$                  j                  d       ej                  d      ddd              Zy)z:Graph diameter, radius, eccentricity and other properties.    N)not_implemented_for)
eccentricitydiameterharmonic_diameterradius	peripherycenter
barycenterresistance_distancekemeny_constanteffective_graph_resistancec           	      0   t        | j                               }t        ||j                        }t	        |      }d}t         j                  | d      t         j                  | |      t        |       }|}d}	|}
d}|r$|r}n|}| }t        j                  | ||      }t	        |      |k7  rd}t        j                  |      t        |j                               }d}d}|D ]{  }||   }t        |   t        |||z
              x|<   }t        |   ||z         x|<   }t        |   |      }t        |   |	      }	t        |   |
      }
t        |   |      }} |dk(  r#|D ch c]  }|   |	k  rd|   z  |k\  r| }}n|d	k(  r&|D ch c]  }|   |
k\  r|   d
z   d|z  k  r| }}nw|dk(  r%|D ch c]  }|   |	k  r|	|k(  s|   |kD  r| }}nM|dk(  r+|D ch c]  }|   |
kD  r||
k(  s|   d
z   d|z  k  r|! }}n|dk(  rt               }nd}t        |      |j                  fd|D               ||z  }|D ]M  }|!|   |   k(  r||   ||   kD  s|   |   k  r|}|"|   |   k(  r||   ||   kD  s|   |   kD  sL|}O |r$|dk(  r|	S |d	k(  r|
S |dk(  r| D cg c]  }|   |	k(  s| }}|S |dk(  r| D cg c]  }|   |
k(  s| }}|S |dk(  rS yc c}w c c}w c c}w c c}w c c}w c c}w )a  Compute requested extreme distance metric of undirected graph G

    Computation is based on smart lower and upper bounds, and in practice
    linear in the number of nodes, rather than quadratic (except for some
    border cases such as complete graphs or circle shaped graphs).

    Parameters
    ----------
    G : NetworkX graph
       An undirected graph

    compute : string denoting the requesting metric
       "diameter" for the maximal eccentricity value,
       "radius" for the minimal eccentricity value,
       "periphery" for the set of nodes with eccentricity equal to the diameter,
       "center" for the set of nodes with eccentricity equal to the radius,
       "eccentricities" for the maximum distance from each node to all other nodes in G

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    value : value of the requested metric
       int for "diameter" and "radius" or
       list of nodes for "center" and "periphery" or
       dictionary of eccentricity values keyed by node for "eccentricities"

    Raises
    ------
    NetworkXError
        If the graph consists of multiple components
    ValueError
        If `compute` is not one of "diameter", "radius", "periphery", "center", or "eccentricities".

    Notes
    -----
    This algorithm was proposed in [1]_ and discussed further in [2]_ and [3]_.

    References
    ----------
    .. [1] F. W. Takes, W. A. Kosters,
       "Determining the diameter of small world networks."
       Proceedings of the 20th ACM international conference on Information and knowledge management, 2011
       https://dl.acm.org/doi/abs/10.1145/2063576.2063748
    .. [2] F. W. Takes, W. A. Kosters,
       "Computing the Eccentricity Distribution of Large Graphs."
       Algorithms, 2013
       https://www.mdpi.com/1999-4893/6/1/100
    .. [3] M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, F. W. Takes,
       "Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: With an application to the six degrees of separation games. "
       Theoretical Computer Science, 2015
       https://www.sciencedirect.com/science/article/pii/S0304397515001644
    )keyFr   sourceweightz5Cannot compute metric because graph is not connected.Nr      r      r   r	   eccentricitieszTcompute must be one of 'diameter', 'radius', 'periphery', 'center', 'eccentricities'c              3   :   K   | ]  }|   |   k(  s|  y wN ).0i	ecc_lower	ecc_uppers     j/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/networkx/algorithms/distance_measures.py	<genexpr>z$_extrema_bounding.<locals>.<genexpr>   s      Oq)A,)A,2NOs   )dictdegreemaxgetlenfromkeyssetnxshortest_path_lengthNetworkXErrorvaluesmin
ValueErrorupdate)Gcomputer   degreesminlowernodeNhigh
candidatesminlowermaxlowerminuppermaxuppermaxuppernodecurrentdistmsgcurrent_eccr   dlowupp	ruled_outvpcr   r   s                            @@r   _extrema_boundingrD      s   R 188:GwGKK0LGADa#Ia#IQJ HHHH "G"Gx &&qHt9>IC""3''$++-(   
	3AQA!$Yq\3q;?3L!MMIaL3!$Yq\;?!CCIaL3 9Q<2H9Q<2H9Q<2H9Q<2H
	3 j  $Q<8+IaL0@H0L I 
   $Q<8+	!q0@AL0P I 
 # $Q<(*)Yq\H-D I    $Q<(*)Yq\A-=H-L I  ((IhCS/!OJOOi
  	!A$aLIl$;;
W\%::aL9\#::  $aLIl$;;
W\%::aL9\#:: '	!k h *(+61Yq\X5Q66(61Yq\X5Q66""q| 7 7s0   /K:K?L,$L	=LLL*Lr   )
edge_attrsc                    | j                         }i }| j                  |      D ]  }|$t        j                  | ||      }t	        |      }n	 ||   }t	        |      }||k7  r*| j                         rd}
nd}
t        j                  |
      t        |j                               ||<    || v r||   S |S # t
        $ r}	t        j                  d      |	d}	~	ww xY w)a  Returns the eccentricity of nodes in G.

    The eccentricity of a node v is the maximum distance from v to
    all other nodes in G.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    v : node, optional
       Return value of specified node

    sp : dict of dicts, optional
       All pairs shortest path lengths as a dictionary of dictionaries

    weight : string, function, or None (default=None)
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    ecc : dictionary
       A dictionary of eccentricity values keyed by node.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> dict(nx.eccentricity(G))
    {1: 2, 2: 3, 3: 2, 4: 2, 5: 3}

    >>> dict(
    ...     nx.eccentricity(G, v=[1, 5])
    ... )  # This returns the eccentricity of node 1 & 5
    {1: 2, 5: 3}

    Nr   Format of "sp" is invalid.zHFound infinite path length because the digraph is not strongly connectedz=Found infinite path length because the graph is not connected)
ordernbunch_iterr&   r'   r#   	TypeErrorr(   is_directedr!   r)   )r-   rA   spr   rH   enlengthLerrr;   s              r   r   r      s    z GGIE
A]]1 $:,,QqHFFANAK :}}* 
 Y""3''6==?#!+$. 	AvtH!  N&&'CD#MNs   B66	C?CCc                     |du r || j                         st        | d|      S |t        | |      }t        |j	                               S )aw  Returns the diameter of the graph G.

    The diameter is the maximum eccentricity.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    d : integer
       Diameter of graph

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.diameter(G)
    3

    See Also
    --------
    eccentricity
    Tr   r.   r   r   rK   rD   r   r!   r)   r-   rM   	useboundsr   s       r   r   r   N  sI    b DQYq}} JvFFy6*qxxz?    c                    | j                         }d}| D ]O  }|t        j                  | |      }n	 ||   }t        |      }|j                         D ]  }|dk7  s	|d|z  z  } Q |dk7  r||dz
  z  |z  S |dkD  rt        j                  S t        j                  S # t        $ r}t        j
                  d      |d}~ww xY w)a  Returns the harmonic diameter of the graph G.

    The harmonic diameter of a graph is the harmonic mean of the distances
    between all pairs of distinct vertices. Graphs that are not strongly
    connected have infinite diameter and mean distance, making such
    measures not useful. Restricting the diameter or mean distance to
    finite distances yields paradoxical values (e.g., a perfect match
    would have diameter one). The harmonic mean handles gracefully
    infinite distances (e.g., a perfect match has harmonic diameter equal
    to the number of vertices minus one), making it possible to assign a
    meaningful value to all graphs.

    Note that in [1] the harmonic diameter is called "connectivity length":
    however, "harmonic diameter" is a more standard name from the
    theory of metric spaces. The name "harmonic mean distance" is perhaps
    a more descriptive name, but is not used in the literature, so we use the
    name "harmonic diameter" here.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    sp : dict of dicts, optional
       All-pairs shortest path lengths as a dictionary of dictionaries

    Returns
    -------
    hd : float
       Harmonic diameter of graph

    References
    ----------
    .. [1] Massimo Marchiori and Vito Latora, "Harmony in the small-world".
           *Physica A: Statistical Mechanics and Its Applications*
           285(3-4), pages 539-546, 2000.
           <https://doi.org/10.1016/S0378-4371(00)00311-3>
    r   NrG   r   )
rH   r&   "single_source_shortest_path_lengthr#   rJ   r(   r)   mathinfnan)	r-   rL   rH   sum_invdrN   rO   rP   rQ   r=   s	            r   r   r     s    P GGIEH ":::1a@FNAK  	"A AvAE!		""  1}	"X--qyxx88O  N&&'CD#MNs   B	C %B;;C c                     |du r || j                         st        | d|      S |t        | |      }t        |j	                               }|D cg c]  }||   |k(  s| }}|S c c}w )a  Returns the periphery of the graph G.

    The periphery is the set of nodes with eccentricity equal to the diameter.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    p : list
       List of nodes in periphery

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.periphery(G)
    [2, 5]

    See Also
    --------
    barycenter
    center
    Tr   rS   rT   rU   )r-   rM   rW   r   r   rA   rB   s          r   r   r     sp    d DQYq}} KGGy6*188:H*q1)*A*H 	+   A'A'c                     |du r || j                         st        | d|      S |t        | |      }t        |j	                               S )aD  Returns the radius of the graph G.

    The radius is the minimum eccentricity.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    r : integer
       Radius of graph

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.radius(G)
    2

    Tr   rS   rT   rK   rD   r   r*   r)   rV   s       r   r   r     sI    \ DQYq}} HVDDy6*qxxz?rX   c                     |du r || j                         st        | d|      S |t        | |      }t        |j	                               }|D cg c]  }||   |k(  s| }}|S c c}w )a  Returns the center of the graph G.

    The center is the set of nodes with eccentricity equal to radius.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    e : eccentricity dictionary, optional
      A precomputed dictionary of eccentricities.

    weight : string, function, or None
        If this is a string, then edge weights will be accessed via the
        edge attribute with this key (that is, the weight of the edge
        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
        such edge attribute exists, the weight of the edge is assumed to
        be one.

        If this is a function, the weight of an edge is the value
        returned by the function. The function must accept exactly three
        positional arguments: the two endpoints of an edge and the
        dictionary of edge attributes for that edge. The function must
        return a number.

        If this is None, every edge has weight/distance/cost 1.

        Weights stored as floating point values can lead to small round-off
        errors in distances. Use integer weights to avoid this.

        Weights should be positive, since they are distances.

    Returns
    -------
    c : list
       List of nodes in center

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> list(nx.center(G))
    [1, 3, 4]

    See Also
    --------
    barycenter
    periphery
    Tr	   rS   rT   rb   )r-   rM   rW   r   r   rA   rB   s          r   r	   r	   8  so    d DQYq}} HVDDy6*_F(q1(A(H 	)r`   attrr   )rE   mutates_inputc                    |t        j                  | |      }n|j                         }|t        d      t	        d      g t        |       }}}|D ]{  \  }}t        |      |k  rt        j                  d|  d      t        |j                               }	||	| j                  |   |<   |	|k  r|	}|g}e|	|k(  sk|j                  |       } |t        j                  |        |S )aZ  Calculate barycenter of a connected graph, optionally with edge weights.

    The :dfn:`barycenter` a
    :func:`connected <networkx.algorithms.components.is_connected>` graph
    :math:`G` is the subgraph induced by the set of its nodes :math:`v`
    minimizing the objective function

    .. math::

        \sum_{u \in V(G)} d_G(u, v),

    where :math:`d_G` is the (possibly weighted) :func:`path length
    <networkx.algorithms.shortest_paths.generic.shortest_path_length>`.
    The barycenter is also called the :dfn:`median`. See [West01]_, p. 78.

    Parameters
    ----------
    G : :class:`networkx.Graph`
        The connected graph :math:`G`.
    weight : :class:`str`, optional
        Passed through to
        :func:`~networkx.algorithms.shortest_paths.generic.shortest_path_length`.
    attr : :class:`str`, optional
        If given, write the value of the objective function to each node's
        `attr` attribute. Otherwise do not store the value.
    sp : dict of dicts, optional
       All pairs shortest path lengths as a dictionary of dictionaries

    Returns
    -------
    list
        Nodes of `G` that induce the barycenter of `G`.

    Raises
    ------
    NetworkXNoPath
        If `G` is disconnected. `G` may appear disconnected to
        :func:`barycenter` if `sp` is given but is missing shortest path
        lengths for any pairs.
    ValueError
        If `sp` and `weight` are both given.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> nx.barycenter(G)
    [1, 3, 4]

    See Also
    --------
    center
    periphery
    rT   z-Cannot use both sp, weight arguments togetherr\   zInput graph zH is disconnected, so every induced subgraph has infinite barycentricity.)r&   r'   itemsr+   floatr#   NetworkXNoPathsumr)   nodesappend_clear_cache)
r-   r   rd   rL   smallestbarycenter_verticesrN   rA   distsbarycentricitys
             r   r
   r
   s  s    n 
z$$Qv6XXZLMM',U|RQ1!H *5u:>##qc "/ /  U\\^,-AGGAJtH$%H#$#x'&&q)* 
rX   directedc                 z   ddl }t        |       dk(  rt        j                  d      t        j                  |       st        j                  d      ||| vrt        j                  d      ||| vrt        j                  d      | j                         } t        |       }|ra|_| j                         r)| j                  dd      D ]  \  }}}	}
d	|
|   z  |
|<    n&| j                  d
      D ]  \  }}}
d	|
|   z  |
|<    t        j                  | |      j                         }|j                  j                  |d      }|o|m|j                  |      }|j                  |      }|j                  ||      |j                  ||      z   |j                  ||      z
  |j                  ||      z
  S |{|j                  |      }i }
| D ]a  }|j                  |      }|j                  ||      |j                  ||      z   |j                  ||      z
  |j                  ||      z
  |
|<   c |
S |{|j                  |      }i }
| D ]a  }|j                  |      }|j                  ||      |j                  ||      z   |j                  ||      z
  |j                  ||      z
  |
|<   c |
S i }
| D ]  }|j                  |      }i |
|<   | D ]d  }|j                  |      }|j                  ||      |j                  ||      z   |j                  ||      z
  |j                  ||      z
  |
|   |<   f  |
S )a  Returns the resistance distance between pairs of nodes in graph G.

    The resistance distance between two nodes of a graph is akin to treating
    the graph as a grid of resistors with a resistance equal to the provided
    weight [1]_, [2]_.

    If weight is not provided, then a weight of 1 is used for all edges.

    If two nodes are the same, the resistance distance is zero.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    nodeA : node or None, optional (default=None)
      A node within graph G.
      If None, compute resistance distance using all nodes as source nodes.

    nodeB : node or None, optional (default=None)
      A node within graph G.
      If None, compute resistance distance using all nodes as target nodes.

    weight : string or None, optional (default=None)
       The edge data key used to compute the resistance distance.
       If None, then each edge has weight 1.

    invert_weight : boolean (default=True)
        Proper calculation of resistance distance requires building the
        Laplacian matrix with the reciprocal of the weight. Not required
        if the weight is already inverted. Weight cannot be zero.

    Returns
    -------
    rd : dict or float
       If `nodeA` and `nodeB` are given, resistance distance between `nodeA`
       and `nodeB`. If `nodeA` or `nodeB` is unspecified (the default), a
       dictionary of nodes with resistance distances as the value.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is a directed graph.

    NetworkXError
        If `G` is not connected, or contains no nodes,
        or `nodeA` is not in `G` or `nodeB` is not in `G`.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> round(nx.resistance_distance(G, 1, 3), 10)
    0.625

    Notes
    -----
    The implementation is based on Theorem A in [2]_. Self-loops are ignored.
    Multi-edges are contracted in one edge with weight equal to the harmonic sum of the weights.

    References
    ----------
    .. [1] Wikipedia
       "Resistance distance."
       https://en.wikipedia.org/wiki/Resistance_distance
    .. [2] D. J. Klein and M. Randic.
        Resistance distance.
        J. of Math. Chem. 12:81-95, 1993.
    r   N'Graph G must contain at least one node.z#Graph G must be strongly connected.zNode A is not in graph G.zNode B is not in graph G.Tkeysdatar   rw   rT   )	hermitian)numpyr#   r&   r(   is_connectedcopylistis_multigraphedgeslaplacian_matrixtodenselinalgpinvindexitem)r-   nodeAnodeBr   invert_weightnp	node_listurA   kr=   rP   Linvr   jrN   n2s                    r   r   r     sN   N 
1v{HII??1DEEU!^:;;U!^:;;	AQI +??gg4dg; *
1a&	M&	* 777- *1a&	M&	*
 	Af-557A99>>!t>,D U.OOE"OOE"yyA1a0499Q?BTYYqRS_TT		OOE" 	YA"A99Q?TYYq!_4tyyAFSTVWXAaD	Y 		OOE" 	YA"A99Q?TYYq!_4tyyAFSTVWXAaD	Y   
	A"AAaD OOB'IIaOii1o&ii1o& ii1o& !R
	 rX   c                 $   ddl }t        |       dk(  rt        j                  d      t        j                  |       st        d      S | j                         } |ra|_| j                         r)| j                  dd      D ]  \  }}}}d||   z  ||<    n&| j                  d      D ]  \  }}}d||   z  ||<    |j                  t        j                  | |	            }t        |j                  d|dd z        | j                         z        S )
a  Returns the Effective graph resistance of G.

    Also known as the Kirchhoff index.

    The effective graph resistance is defined as the sum
    of the resistance distance of every node pair in G [1]_.

    If weight is not provided, then a weight of 1 is used for all edges.

    The effective graph resistance of a disconnected graph is infinite.

    Parameters
    ----------
    G : NetworkX graph
       A graph

    weight : string or None, optional (default=None)
       The edge data key used to compute the effective graph resistance.
       If None, then each edge has weight 1.

    invert_weight : boolean (default=True)
        Proper calculation of resistance distance requires building the
        Laplacian matrix with the reciprocal of the weight. Not required
        if the weight is already inverted. Weight cannot be zero.

    Returns
    -------
    RG : float
        The effective graph resistance of `G`.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is a directed graph.

    NetworkXError
        If `G` does not contain any nodes.

    Examples
    --------
    >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])
    >>> round(nx.effective_graph_resistance(G), 10)
    10.25

    Notes
    -----
    The implementation is based on Theorem 2.2 in [2]_. Self-loops are ignored.
    Multi-edges are contracted in one edge with weight equal to the harmonic sum of the weights.

    References
    ----------
    .. [1] Wolfram
       "Kirchhoff Index."
       https://mathworld.wolfram.com/KirchhoffIndex.html
    .. [2] W. Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, R. E. Kooij.
        Effective graph resistance.
        Lin. Alg. Appl. 435:2491-2506, 2011.
    r   Nrt   r\   Tru   r   rx   rT   )rz   r#   r&   r(   r{   rh   r|   r~   r   sortlaplacian_spectrumrj   number_of_nodes)	r-   r   r   r   r   rA   r   r=   mus	            r   r   r   M  s   z 
1v{HII ??1U| 	
A+??gg4dg; *
1a&	M&	* 777- *1a&	M&	* 
&&q8	9B BqrF
#a&7&7&99::rX   rT   c          	      J   ddl }ddl}t        |       dk(  rt        j                  d      t        j
                  |       st        j                  d      t        j                  | |      rt        j                  d      t        j                  | |      }|j                  \  }}|j                  d      }|j                  d	
      5  d|j                  |      z  }ddd       d|j                  |      <   |j                  j                  |j                  j                  |d||d            }	|	||	z  z  }
|j!                  |j"                  j%                  |
j'                                     }t)        |j                  dd|dd z
  z              S # 1 sw Y   xY w)u  Returns the Kemeny constant of the given graph.

    The *Kemeny constant* (or Kemeny's constant) of a graph `G`
    can be computed by regarding the graph as a Markov chain.
    The Kemeny constant is then the expected number of time steps
    to transition from a starting state i to a random destination state
    sampled from the Markov chain's stationary distribution.
    The Kemeny constant is independent of the chosen initial state [1]_.

    The Kemeny constant measures the time needed for spreading
    across a graph. Low values indicate a closely connected graph
    whereas high values indicate a spread-out graph.

    If weight is not provided, then a weight of 1 is used for all edges.

    Since `G` represents a Markov chain, the weights must be positive.

    Parameters
    ----------
    G : NetworkX graph

    weight : string or None, optional (default=None)
       The edge data key used to compute the Kemeny constant.
       If None, then each edge has weight 1.

    Returns
    -------
    float
        The Kemeny constant of the graph `G`.

    Raises
    ------
    NetworkXNotImplemented
        If the graph `G` is directed.

    NetworkXError
        If the graph `G` is not connected, or contains no nodes,
        or has edges with negative weights.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> round(nx.kemeny_constant(G), 10)
    3.2

    Notes
    -----
    The implementation is based on equation (3.3) in [2]_.
    Self-loops are allowed and indicate a Markov chain where
    the state can remain the same. Multi-edges are contracted
    in one edge with weight equal to the sum of the weights.

    References
    ----------
    .. [1] Wikipedia
       "Kemeny's constant."
       https://en.wikipedia.org/wiki/Kemeny%27s_constant
    .. [2] Lovász L.
        Random walks on graphs: A survey.
        Paul Erdös is Eighty, vol. 2, Bolyai Society,
        Mathematical Studies, Keszthely, Hungary (1993), pp. 1-46
    r   Nrt   zGraph G must be connected.rT   z+The weights of graph G must be nonnegative.r   )axisignore)divideg      ?csr)format)rz   scipyr#   r&   r(   r{   is_negatively_weightedadjacency_matrixshaperj   errstatesqrtisinfsparse	csr_arrayspdiagsr   r   eigvalshr   rh   )r-   r   r   rL   ArN   mdiags
diags_sqrtDHHeigs               r   r   r     se   B 
1v{HII??1;<<	  62LMM 	Af-A77DAqEEqEME	H	% *2775>)
*'(Jrxx
#$			RYY..z1a5.Q	RB
a"fA ''"))$$QYY[1
2C QSb\*+,,* *s   FF")r   N)NNN)NFNr   )NNNT)NT)__doc__r[   networkxr&   networkx.utilsr   __all__rD   _dispatchabler   r   r   r   r   r	   r
   r   r   utilsr   r   rX   r   <module>r      s   @   .Zz X&W 'Wt X&4 '4n > >B X&7 '7t X&1 '1h X&7 '7t Xfa[AM BM` Z X&D ' !DN Z X&S; ' !S;l j)X&!% W- ' *W-rX   