
    wgO                        d dl mZ ddlmZ 	 ej
                  Zed        Zd Z	edd       Z
d Zedd	       Zd
 Zed        Zi fdZed        Zedd       Zedd       Zed        Zed        Zy# e$ r ej                  ZY nw xY w)   )xrange   )defunc                     t        |      }| j                  }d|dz  z  }t        |dz         D ]  }||||   z  z  }|||z
  z  |dz   z  } |S )z
    Given a sequence `(s_k)` containing at least `n+1` items, returns the
    `n`-th forward difference,

    .. math ::

        \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k.
    r   )intzeror   )ctxsndbks         d/home/mcse/projects/flask/flask-venv/lib/python3.12/site-packages/mpmath/calculus/differentiation.py
differencer      sh     	AAA	QAAaC[ !	Q1X!A#YAaC ! H    c                    |j                  d      }|j                  dd      }|j                  dd      }|d|z  z   |dz   z  }	| j                  }
	 |	| _        |j                  d      }|H|j                  d	      rt        | j                  |            }nd}| j	                  d| |z
  |z
        }n| j                  |      }|j                  dd      }|r%|| j                  |      z  }t        |dz         }|}nt        | |dz   d      }d|z  }|r|d
|z  z  }|D cg c]  } ||||z  z          }}|||	f|
| _        S c c}w # |
| _        w xY w)Nsingularaddprec
   	direction    r   r   hrelativeg      ?)getprecr   magldexpconvertsignr   )r
   fxr   r   optionsr   r   r   workprecorigr   	hextramagstepsnormr   valuess                    r   hstepsr*      s_   {{:&Hkk)R(GK+IQwY1Q3'H88DKK9{{:&
O				!dU7]945AAAKKQ/	)$$A1Q3KED A2qsA&EaCDQJA$)*q!AacE(**tX% + s   CE	 !E6E	 E	 		Ec                 <    d}	 t              }t              d}|r.D cg c]  } j                  |       c}t         |      S |j	                  dd      }dk(  r-|dk7  r(|j	                  d      s  j                              S  j
                  }		 |dk(  r4t         |	fi |\  }
}}| _         j                  |
      |z  z  }n|dk(  r xj
                  dz  c_         j                  |j	                  d	d
             fd} j                  |dd j                  z  g      }| j                        z  d j                  z  z  }nt        d|z        |	 _        |S # t        $ r Y hw xY wc c}w # |	 _        w xY w)a  
    Numerically computes the derivative of `f`, `f'(x)`, or generally for
    an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`.
    A few basic examples are::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> diff(lambda x: x**2 + x, 1.0)
        3.0
        >>> diff(lambda x: x**2 + x, 1.0, 2)
        2.0
        >>> diff(lambda x: x**2 + x, 1.0, 3)
        0.0
        >>> nprint([diff(exp, 3, n) for n in range(5)])   # exp'(x) = exp(x)
        [20.0855, 20.0855, 20.0855, 20.0855, 20.0855]

    Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)`
    and order `(n_1, \ldots, n_k)`, the partial derivative
    `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example::

        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1))
        2.75
        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1))
        3.0

    **Options**

    The following optional keyword arguments are recognized:

    ``method``
        Supported methods are ``'step'`` or ``'quad'``: derivatives may be
        computed using either a finite difference with a small step
        size `h` (default), or numerical quadrature.
    ``direction``
        Direction of finite difference: can be -1 for a left
        difference, 0 for a central difference (default), or +1
        for a right difference; more generally can be any complex number.
    ``addprec``
        Extra precision for `h` used to account for the function's
        sensitivity to perturbations (default = 10).
    ``relative``
        Choose `h` relative to the magnitude of `x`, rather than an
        absolute value; useful for large or tiny `x` (default = False).
    ``h``
        As an alternative to ``addprec`` and ``relative``, manually
        select the step size `h`.
    ``singular``
        If True, evaluation exactly at the point `x` is avoided; this is
        useful for differentiating functions with removable singularities.
        Default = False.
    ``radius``
        Radius of integration contour (with ``method = 'quad'``).
        Default = 0.25. A larger radius typically is faster and more
        accurate, but it must be chosen so that `f` has no
        singularities within the radius from the evaluation point.

    A finite difference requires `n+1` function evaluations and must be
    performed at `(n+1)` times the target precision. Accordingly, `f` must
    support fast evaluation at high precision.

    With integration, a larger number of function evaluations is
    required, but not much extra precision is required. For high order
    derivatives, this method may thus be faster if f is very expensive to
    evaluate at high precision.

    **Further examples**

    The direction option is useful for computing left- or right-sided
    derivatives of nonsmooth functions::

        >>> diff(abs, 0, direction=0)
        0.0
        >>> diff(abs, 0, direction=1)
        1.0
        >>> diff(abs, 0, direction=-1)
        -1.0

    More generally, if the direction is nonzero, a right difference
    is computed where the step size is multiplied by sign(direction).
    For example, with direction=+j, the derivative from the positive
    imaginary direction will be computed::

        >>> diff(abs, 0, direction=j)
        (0.0 - 1.0j)

    With integration, the result may have a small imaginary part
    even even if the result is purely real::

        >>> diff(sqrt, 1, method='quad')    # doctest:+ELLIPSIS
        (0.5 - 4.59...e-26j)
        >>> chop(_)
        0.5

    Adding precision to obtain an accurate value::

        >>> diff(cos, 1e-30)
        0.0
        >>> diff(cos, 1e-30, h=0.0001)
        -9.99999998328279e-31
        >>> diff(cos, 1e-30, addprec=100)
        -1.0e-30

    FTmethodstepr   quadr   r   radiusg      ?c                 R    j                  |       z  }|z   } |      |z  z  S N)expj)treizr
   r!   r   r/   r"   s      r   gzdiff.<locals>.g   s0    SXXa[(Gtc1f}$r   r   zunknown method: %r)list	TypeErrorr   _partial_diffr   r   r*   r   quadtspi	factorial
ValueError)r
   r!   r"   r   r#   partialorders_r,   r   r)   r(   r$   vr6   r   r/   s   ````            @r   diffrB   C   s   R GaG %&'S[[^'S!Q88[[6*FAv&F"7;;z+BQ  88DV%+CAq$%J'%J"FD(CHvq)D!G3AvHHNH[[Xt!<=F% % 

1q!CFF(m,ACMM!$$#&&1A1F:;;2I7   (. s#   E= F"CF =	F
	F
	Fc                      |s        S t        |      s | S dt        t        |            D ]	  |   s	 n |    fd}d|<   t         |||      S )Nr   c                  D      fd} j                   |    fi S )Nc                 .     d  | fz   dz   d  z    S Nr    )r3   r!   f_argsis    r   innerz1_partial_diff.<locals>.fdiff_inner.<locals>.inner   s*    vbqzQD(6!A#$<799r   rB   )rH   rJ   r
   r!   rI   r#   orders   ` r   fdiff_innerz"_partial_diff.<locals>.fdiff_inner   s&    	:sxxvay%;7;;r   )sumrangelenr9   )r
   r!   xsr?   r#   rM   rI   rL   s   ``  ` @@r   r9   r9      sw    s
v;"v	A3v; !9 1IE< < F1Ik2vw??r   Nc              +     K   || j                   }nt        |      }|j                  dd      dk7  r0d}||dz   k  r% | j                  |||fi | |dz  }||dz   k  r%y|j                  d      }|r| j                  ||dd       n || j	                  |             |dk  ry|| j                   k(  rd	\  }}nd|dz   }}	 | j
                  }	t        | ||||	fi |\  }
}}t        ||      D ]5  }	 || _        | j                  |
|      ||z  z  }|	| _        | ||k\  s5 y |t        |d
z  dz         }}t        ||      }# |	| _        w xY ww)ad  
    Returns a generator that yields the sequence of derivatives

    .. math ::

        f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots

    With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)`
    function evaluations to generate the first `k` derivatives,
    rather than the roughly `O(k^2)` evaluations
    required if one calls :func:`~mpmath.diff` `k` separate times.

    With `n < \infty`, the generator stops as soon as the
    `n`-th derivative has been generated. If the exact number of
    needed derivatives is known in advance, this is further
    slightly more efficient.

    Options are the same as for :func:`~mpmath.diff`.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15
        >>> nprint(list(diffs(cos, 1, 5)))
        [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471]
        >>> for i, d in zip(range(6), diffs(cos, 1)):
        ...     print("%s %s" % (i, d))
        ...
        0 0.54030230586814
        1 -0.841470984807897
        2 -0.54030230586814
        3 0.841470984807897
        4 0.54030230586814
        5 -0.841470984807897

    Nr,   r-   r   r   r   T)r   )r   r   gffffff?)
infr   r   rB   r   r   r*   r   r   min)r
   r!   r"   r   r#   r   r   ABcallprecyr(   r$   r   s                 r   diffsrY      s    L 	yGGF{{8V$.!a%i#((1a.g..FA !a%i 	{{:&Hhhq!Qh..A1uCGG|1!A#1
88"31aEWE41 	A$#NN1a(472#"HAv	 #aeAg,11I  $s+   AE!BE9EE*#E	EEc                 0     t                g  fd}|S )Nc                 |    t        t              | dz         D ]  }j                  t                      |    S rF   )r   rP   appendnext)r   rI   datagens     r   r!   ziterable_to_function.<locals>.f,  s:    D	1Q3' 	#AKKS	"	#Awr   )iter)r_   r!   r^   s   ` @r   iterable_to_functionra   )  s    
s)CD Hr   c              #     K   t        |      }|dk(  r|d   D ]  }|  yt        | j                  |d|dz               }t        | j                  ||dz  d             }d}	  ||       |d      z  }d}t        d|dz         D ]*  }	|||	z
  dz   z  |	z  }|| |||	z
        z   ||	      z  z  }, | |dz  }Yw)aV  
    Given a list of `N` iterables or generators yielding
    `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`,
    generate `g(x), g'(x), g''(x), \ldots` where
    `g(x) = f_1(x) f_2(x) \cdots f_N(x)`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of each `f_k(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> f = lambda x: exp(x)*cos(x)*sin(x)
        >>> u = diffs(f, 1)
        >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)])
        >>> next(u); next(v)
        1.23586333600241
        1.23586333600241
        >>> next(u); next(v)
        0.104658952245596
        0.104658952245596
        >>> next(u); next(v)
        -5.96999877552086
        -5.96999877552086
        >>> next(u); next(v)
        -12.4632923122697
        -12.4632923122697

    r   r   Nr   )rP   ra   
diffs_prodr   )
r
   factorsNcurA   r   r   ar   s
             r   rc   rc   2  s     H 	GAAv 	AG	 !A!?@ 1!?@!qtAAAac] '1QK1$Q1Q3Z!A$&&' GFA s   B<B>c                    | |v r||    S |sddi|d<   t        | dz
        }t        d t        |      D              }i }t        |      D ]+  \  }}|d   dz   f|dd z   }||v r||xx   |z  cc<   '|||<   - t        |      D ]c  \  }}t        |      st	        |      D ]D  \  }}|s	|d| |dz
  ||dz      dz   fz   ||dz   d z   }	|	|v r||	xx   ||z  z  cc<   =||z  ||	<   F e ||| <   ||    S )z
    nth differentiation polynomial for exp (Faa di Bruno's formula).

    TODO: most exponents are zero, so maybe a sparse representation
    would be better.
    r   r   r   c              3   0   K   | ]  \  }}|d z   |f  yw)rj   NrG   ).0rf   rA   s      r   	<genexpr>zdpoly.<locals>.<genexpr>t  s     2EQqafQZ2s   Nr   )dpolydict	iteritemsrN   	enumerate)
r   _cacheRRapowerscountpowers1r   ppowers2s
             r   rn   rn   h  sG    	F{ay!Hq	ac
A2Yq\22A	B"1  !9Q;.6!":-b=wK5 KBwK  #1 	*6{V$ 	*CAa !*!F1Q3KM'::VAaCD\Ib=wK1U7*K"#E'BwK	*	* F1I!9r   c           	   #   $  K   t        |      | j                   d            }| d}	 | j                  d      }t        t	        |            D ].  \  }}||| j                  fdt        |      D              z  z  }0 ||z   |dz  }cw)a  
    Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots`
    generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of `f(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

    The derivatives of the gamma function can be computed using
    logarithmic differentiation::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>>
        >>> def diffs_loggamma(x):
        ...     yield loggamma(x)
        ...     i = 0
        ...     while 1:
        ...         yield psi(i,x)
        ...         i += 1
        ...
        >>> u = diffs_exp(diffs_loggamma(3))
        >>> v = diffs(gamma, 3)
        >>> next(u); next(v)
        2.0
        2.0
        >>> next(u); next(v)
        1.84556867019693
        1.84556867019693
        >>> next(u); next(v)
        2.49292999190269
        2.49292999190269
        >>> next(u); next(v)
        3.44996501352367
        3.44996501352367

    r   r   c              3   F   K   | ]  \  }}|s	 |d z         |z    yw)r   NrG   )rl   r   rx   fns      r   rm   zdiffs_exp.<locals>.<genexpr>  s#     LEQq!R!WaZLs   
!!)ra   expmpfrp   rn   fprodrq   )r
   fdiffsf0rI   r   ru   rf   r|   s          @r   	diffs_expr     s     X 
f	%B	AB
H	A
GGAJ"58, 	MIFA399LYv5FLLLLA	M"f	Q s   BBc           	           t        t         j                   j                  |                  dz   d      }||z
  dz
   fd} j	                  |||       j                  ||z
        z  S )a	  
    Calculates the Riemann-Liouville differintegral, or fractional
    derivative, defined by

    .. math ::

        \,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m}
        \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt

    where `f` is a given (presumably well-behaved) function,
    `x` is the evaluation point, `n` is the order, and `x_0` is
    the reference point of integration (`m` is an arbitrary
    parameter selected automatically).

    With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`,
    the second derivative `f''(x)`, etc. With `n = -1`, it gives
    `\int_{x_0}^x f(t) dt`, with `n = -2`
    it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc.

    As `n` is permitted to be any number, this operator generalizes
    iterated differentiation and iterated integration to a single
    operator with a continuous order parameter.

    **Examples**

    There is an exact formula for the fractional derivative of a
    monomial `x^p`, which may be used as a reference. For example,
    the following gives a half-derivative (order 0.5)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> x = mpf(3); p = 2; n = 0.5
        >>> differint(lambda t: t**p, x, n)
        7.81764019044672
        >>> gamma(p+1)/gamma(p-n+1) * x**(p-n)
        7.81764019044672

    Another useful test function is the exponential function, whose
    integration / differentiation formula easy generalizes
    to arbitrary order. Here we first compute a third derivative,
    and then a triply nested integral. (The reference point `x_0`
    is set to `-\infty` to avoid nonzero endpoint terms.)::

        >>> differint(lambda x: exp(pi*x), -1.5, 3)
        0.278538406900792
        >>> exp(pi*-1.5) * pi**3
        0.278538406900792
        >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf)
        1922.50563031149
        >>> exp(pi*3.5) / pi**3
        1922.50563031149

    However, for noninteger `n`, the differentiation formula for the
    exponential function must be modified to give the same result as the
    Riemann-Liouville differintegral::

        >>> x = mpf(3.5)
        >>> c = pi
        >>> n = 1+2*j
        >>> differint(lambda x: exp(c*x), x, n)
        (-123295.005390743 + 140955.117867654j)
        >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n)
        (-123295.005390743 + 140955.117867654j)


    r   c                 8     j                   fd g      S )Nc                 &    | z
  z   |       z  S r1   rG   )r3   r!   rr"   s    r   <lambda>z-differint.<locals>.<lambda>.<locals>.<lambda>  s    acAX!_ r   )r.   )r"   r
   r!   r   x0s   `r   r   zdifferint.<locals>.<lambda>  s    #((4r1g> r   )maxr   ceilrerB   gamma)r
   r!   r"   r   r   mr6   r   s   ``  `  @r   	differintr     sc    H 	C#$Q&*A	!AA>A88Aq!syy1~--r   c                 ,     dk(  rS  fd}|S )a3  
    Given a function `f`, returns a function `g(x)` that evaluates the nth
    derivative `f^{(n)}(x)`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> cos2 = diffun(sin)
        >>> sin2 = diffun(sin, 4)
        >>> cos(1.3), cos2(1.3)
        (0.267498828624587, 0.267498828624587)
        >>> sin(1.3), sin2(1.3)
        (0.963558185417193, 0.963558185417193)

    The function `f` must support arbitrary precision evaluation.
    See :func:`~mpmath.diff` for additional details and supported
    keyword options.
    r   c                 .     j                   | fi S r1   rK   )r"   r
   r!   r   r#   s    r   r6   zdiffun.<locals>.g  s    sxx1a+7++r   rG   )r
   r!   r   r#   r6   s   ```` r   diffunr   	  s    & 	Av,Hr   c                 4   t         | j                  |||fi |      }|j                  dd      r6|D cg c](  \  }}| j                  |      | j	                  |      z  * c}}S |D cg c]  \  }}|| j	                  |      z   c}}S c c}}w c c}}w )a  
    Produces a degree-`n` Taylor polynomial around the point `x` of the
    given function `f`. The coefficients are returned as a list.

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nprint(chop(taylor(sin, 0, 5)))
        [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333]

    The coefficients are computed using high-order numerical
    differentiation. The function must be possible to evaluate
    to arbitrary precision. See :func:`~mpmath.diff` for additional details
    and supported keyword options.

    Note that to evaluate the Taylor polynomial as an approximation
    of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed,
    and the point of the Taylor expansion must be subtracted from
    the argument:

        >>> p = taylor(exp, 2.0, 10)
        >>> polyval(p[::-1], 2.5 - 2.0)
        12.1824939606092
        >>> exp(2.5)
        12.1824939607035

    chopT)rq   rY   r   r   r<   )r
   r!   r"   r   r#   r_   rI   r   s           r   taylorr   "  s    8 ICIIaA11
2C{{64 9<=ACMM!,,==/23tq!#--""33 >3s   -B,Bc                    t        |      ||z   dz   k  rt        d      |dk(  r4|dk(  r| j                  g| j                  gfS |d|dz    | j                  gfS | j                  |      }t	        |      D ]2  }t	        t        |||z   dz               D ]  }|||z   |z
     |||f<    4 | j                  ||dz   ||z   dz           }| j                  ||      }| j                  gt        |      z   }	dg|dz   z  }
t	        |dz         D ];  }||   }t	        dt        ||      dz         D ]  }||	|   |||z
     z  z  } ||
|<   = |
|	fS )a  
    Computes a Pade approximation of degree `(L, M)` to a function.
    Given at least `L+M+1` Taylor coefficients `a` approximating
    a function `A(x)`, :func:`~mpmath.pade` returns coefficients of
    polynomials `P, Q` satisfying

    .. math ::

        P = \sum_{k=0}^L p_k x^k

        Q = \sum_{k=0}^M q_k x^k

        Q_0 = 1

        A(x) Q(x) = P(x) + O(x^{L+M+1})

    `P(x)/Q(x)` can provide a good approximation to an analytic function
    beyond the radius of convergence of its Taylor series (example
    from G.A. Baker 'Essentials of Pade Approximants' Academic Press,
    Ch.1A)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> one = mpf(1)
        >>> def f(x):
        ...     return sqrt((one + 2*x)/(one + x))
        ...
        >>> a = taylor(f, 0, 6)
        >>> p, q = pade(a, 3, 3)
        >>> x = 10
        >>> polyval(p[::-1], x)/polyval(q[::-1], x)
        1.38169105566806
        >>> f(x)
        1.38169855941551

    r   z%L+M+1 Coefficients should be providedr   N)rP   r=   onematrixrO   rT   lu_solver7   )r
   rh   LMrU   jrI   rA   r"   qrx   r   s               r   pader   D  s   P 1v!A~@AAAv6GG9swwi''Tac7SWWI%% 	

1A1X s1ac!e}% 	A!AhAadG	 
AqsQqSU$	%%AQA		DGA	
QqS	A1Q3Z aDq#a(Q,' 	A1a!fA	!	
 a4Kr   )r   r1   )r   r   )libmp.backendr   calculusr   ro   rp   AttributeErroritemsr   r*   rB   r9   rY   ra   rc   rn   r   r   r   r   r   rG   r   r   <module>r      s   " I  "!H H HT@" G GR 3 3j  B 4 4l F. F.P  0 4 4B B B  

Is   A5 5B	B	